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WOX11: the founder of plant organ 
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Abstract 

De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or 
wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regenera-
tion from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from cal-
lus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regen-
eration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis 
thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establish-
ment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its 
target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell 
fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
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Background
De novo organ regeneration is a type of plant regenera-
tion, and refers to the ability of detached or wounded 
organs to regenerate adventitious roots and/or adven-
titious shoots (Ikeuchi et  al. 2019; Sang et  al. 2018; 
Williams 2021; Xu and Huang 2014). De novo organ 
regeneration can occur in natural conditions, for exam-
ple, roots or shoots can regenerate from wounded leaves 
or stems. This process of direct de novo organ regenera-
tion is widely exploited in the use of leaf or stem cuttings 
to propagate plants (Druege et  al. 2019, 2016). De novo 
organ regeneration can also occur indirectly in tissue cul-
ture, in which adventitious roots or adventitious shoots 
are regenerated from callus, a pluripotent cell mass 
induced from detached explants by a high concentration 

of auxin in the medium (Ikeuchi et  al. 2013; Sang et  al. 
2018; Sugimoto et  al. 2011). Research on de novo organ 
regeneration has identified WUSCHEL-RELATED 
HOMEOBOX11 (WOX11) as the key gene involved in 
the auxin response and cell fate transition. In this review, 
we mainly focus on the role of WOX11 in the model 
plant Arabidopsis thaliana, including its role in de novo 
root regeneration from detached leaves, regeneration 
of adventitious lateral roots from the wounded primary 
root, and callus formation in tissue culture. We also sum-
marize the conserved role of WOX11 in diverse plant 
species and propose its evolutionary route in vascular 
plants.

Role of WOX11 in de novo root regeneration 
from detached leaves
Cutting technology is widely used for vegetative propa-
gation of plants. Detached cuttings of leaves or stems 
regenerate adventitious roots from the wounded site, in a 
process known as de novo root regeneration (Bellini et al. 
2014; Bustillo-Avendaño et  al. 2018; Druege et  al. 2019; 
De Klerk et  al. 1999; Verstraeten et  al. 2014; Xu 2018). 
Studies focusing on adventitious rooting from detached 
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leaves of Arabidopsis (i.e., leaf cuttings) have revealed 
the developmental framework of de novo root regen-
eration, which can be separated into three phases (Xu 
2018). In phase I, the detached leaf senses many signals 
including wounding and environmental signals as well 
as its own developmental status, and then converts all 
these signals to biosynthesize a certain level of auxin as 
the output in mesophyll, leaf margin, and some vascula-
ture cells (together known as converter cells) (Chen et al. 
2016a; Chen et  al. 2016b; Hernández-Coronado et  al. 
2022; Li et al. 2020a; Pan et al. 2019; Shanmukhan et al. 
2021; Ye et  al. 2020; Zhang et  al. 2019). The auxin level 
might be one of the factors determining the efficiency of 
root regeneration. In phase II, auxin is transported from 
the converter cells to the regeneration-competent cells 
(i.e.  vascular adult stem cells such as procambium and 
some vascular parenchyma cells in the vasculature near 
the wounded site) (Chen et  al. 2016a; Liu et  al. 2014b; 
Sun et al. 2016). In phase III, the regeneration-competent 
cells undergo cell fate transition and division to form the 
root tip, guided by auxin (Bustillo-Avendaño et al. 2018; 
Hu and Xu 2016; Liu et al. 2014b; Liu et al. 2022; Shan-
mukhan et  al. 2021; Sheng et  al. 2017) Therefore, auxin 
is the key hormone in de novo root regeneration from 
detached Arabidopsis leaves.

WOX11 was discovered in both Arabidopsis and rice 
(Oryza sativa) for its genetic role in promotion of adven-
titious rooting (Liu et al. 2014b; Zhao et al. 2009). Dur-
ing de novo root regeneration from detached Arabidopsis 
leaves, WOX11 links auxin to the cell fate transition of 
regeneration-competent cells. The promoter region of 
WOX11 harbors auxin response elements (AuxREs) that 
are targeted by AUXIN RESPONSE FACTORs (ARFs) 
in the auxin signaling pathway (Liu et al. 2014b). When 
auxin is polarly transported into the regeneration-com-
petent cells, the auxin signaling pathway can directly 
induce WOX11 expression via these AuxREs in regener-
ation-competent cells (Liu et al. 2014b), although it is still 
unclear which specific ARFs are involved in this process. 
The expression of WOX11 indicates the cell fate transi-
tion from a regeneration-competent cell into an adven-
titious root founder cell (known as the priming step), 
and WOX11 is the specific marker of root founder cells 
(Liu et al. 2014b). This cell fate transition process is not 
dependent on cell division. Next, as a transcription fac-
tor, WOX11 can directly bind to the WOX-binding cis 
elements (WOXCEs) in the promoters of LATERAL 
ORGAN BOUNDARIES DOMAIN16 (LBD16), WOX5, 
and WOX7, and activate their expression (Hu and Xu 
2016; Liu et  al. 2014b; Sheng et  al. 2017). Meanwhile, 
the adventitious root founder cell repeatedly divides to 
form the adventitious root primordium (known as the 
initiation step). WOX11 expression decreases during cell 

division and LBD16 and WOX5/7 maintain their expres-
sion in the adventitious root primordium as molecular 
markers (Hu and Xu 2016; Liu et al. 2014b; Sheng et al. 
2017). Differentiation of the adventitious root primor-
dium leads to the formation of the adventitious root 
apical meristem (RAM, known as the patterning step) 
and finally to the formation of the adventitious root tip 
(known as the emergence step) (Xu 2018). Genetic stud-
ies indicate that mutation of WOX11 or inhibition of the 
WOX11 pathway can lead to decreased rooting ability, 
and overexpression of WOX11 can increase the ability 
of detached leaves to form roots (Liu et  al. 2014b; Pan 
et al. 2019). In addition, WOX12 plays a partially redun-
dant role with WOX11 in de novo root regeneration from 
detached leaves (Liu et al. 2014b; Pan et al. 2019). WOX11 
and WOX12 (WOX11/12) might act with ARABIDOPSIS 
TRITHORAX-RELATED 2 (ATXR2), which is involved 
in epigenetic regulation of gene expression, during de 
novo root regeneration from detached Arabidopsis leaves 
(Lee et al. 2018a). Overall, WOX11 promotes the cell fate 
transition of the regeneration-competent cell guided by 
auxin and participates in the priming and initiation steps 
(Fig. 1A).

In many other plant species, WOX11 promotes de novo 
root regeneration as well as adventitious root formation 
in non-regeneration processes. In the Populus genus, 
WOX11 can promote de novo root regeneration from 
stem cuttings, and overexpression of WOX11 can signifi-
cantly enhance adventitious rooting from detached stems 
(Bannoud and Bellini 2021; Li et al. 2018; Liu et al. 2014a; 
Liu et al. 2018b; Wang et al. 2019; Xu et al. 2015). In rice, 
WOX11 is involved in the formation of crown roots, a 
type of adventitious root in monocots, probably through 
cooperation with epigenetic pathways (Chen et al. 2013; 
Cheng et al. 2018; Jiang et al. 2017; Li et al. 2017; Lu et al. 
2012; Mao et  al. 2020a; Panda et  al. 2021; Zhang et  al. 
2018b; Zhao et  al. 2009, 2020, 2015; Zhou et  al. 2017). 
WOX11 also regulates adventitious rooting in Panax gin-
seng (Liu et al. 2019), the banyan tree (Ficus macrocarpa) 
(Zhang et  al. 2020), and apple (Malus domestica) (Mao 
et al. 2020b). Overall, it seems that WOX11 has at least 
a partially evolutionarily conserved role in promoting 
adventitious rooting in angiosperms, and could be a use-
ful molecular tool to promote rooting from leaf or stem 
cuttings.

Role of WOX11 in the formation of adventitious 
lateral roots from wounded roots
In seed plants, the root system architecture is usually 
established by three types of roots: the primary root, 
which is the first root formed in the embryo stage; lateral 
roots, which initiate from developing roots; and adventi-
tious roots, which initiate from non-root organs or very 
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old roots (Barlow. 1994, 1986; Groff and Kaplan 1988; 
Rost et al. 1997). Two types of lateral roots contribute to 
the plasticity of root system architecture in many plant 
species: acropetal lateral roots, which initiate from the tip 
of a developing parent root and emerge in an acropetal 
sequence; and adventitious lateral roots, which initiate 

without the acropetal pattern and can continuously form 
between acropetal lateral roots or even during secondary 
growth of the parent root (Barlow 1986; Charlton 1996; 
Esau 1965; Ge et  al. 2019; Hou et  al. 2004; Paolillo and 
Zobel 2002; Priestley and Swingle 1929).

Fig. 1  Roles of WOX11 in Arabidopsis and rice, and CrWOXa in Ceratopteris richardii. A Role of WOX11 in de novo root regeneration from detached 
Arabidopsis leaves. B Role of WOX11 in adventitious lateral rooting from primary roots of Arabidopsis. C Role of WOX11 in callus formation from 
Arabidopsis hypocotyl explants. D Role of WOX11 in callus formation from rice leaf explants. E Role of CrWOXa in adventitious root initiation in C. 
richardii 



Page 4 of 11Wan et al. Cell Regeneration            (2023) 12:1 

In wild-type Arabidopsis growing vertically on syn-
thetic medium, the primary root usually produces 
acropetal lateral roots. During acropetal lateral root ini-
tiation, ARF7/19 in the auxin signaling pathway directly 
activate LBD16 and other LBD genes in the acropetal lat-
eral root founder cells to initiate the acropetal lateral root 
primordium (Ito et al. 2016; Okushima et al. 2007, 2005). 
Mutations in ARF7/19 can result in loss of LBDs expres-
sion and the lack of acropetal lateral root formation from 
the primary root in Arabidopsis (Okushima et  al. 2007, 
2005). WOX11 is not expressed in the acropetal lateral 
root founder cells and is not required for the initiation of 
the acropetal lateral root primordium (Liu et  al. 2014b; 
Sheng et  al. 2017). However, when the primary root is 
cut or under severe stress, adventitious lateral roots are 
able to regenerate from the primary root, even in the arf7 
arf19 double mutant background (Ditengou et  al. 2008; 
Sheng et  al. 2017). WOX11 is expressed in the adventi-
tious lateral root founder cell and directly activates 
LBD16 expression to initiate the adventitious lateral root 
primordium independently of ARF7/19 (Sheng et  al. 
2017). Because auxin is also critical for adventitious lat-
eral rooting, it is expected that ARFs other than ARF7/19 
might cooperate with WOX11 in this process. Inter-
estingly, both acropetal and adventitious lateral roots 
contribute to root system architecture when wild-type 
Arabidopsis is grown in soil. In soil, WOX11 also contrib-
utes to adventitious lateral rooting, thereby contribut-
ing to the formation of normal root system architecture 
(Sheng et  al. 2017). In addition, WOX11 is involved in 
the formation of adventitious lateral roots from second-
ary growth of the primary root in Arabidopsis (Baesso 
et al. 2018). Thus, similar to its role in de novo root regen-
eration from detached Arabidopsis leaves, WOX11 also 
functions in the root founder cells during adventitious 
lateral root formation (Fig. 1B).

The involvement of WOX11 in adventitious lat-
eral rooting has been reported for many other species. 
In Populus, application of a bending treatment to the 
woody taproot with secondary structures causes adventi-
tious lateral roots to initiate from the vascular cambium 
zone, and WOX11 expression is highly induced during 
this process (Baesso et  al. 2020). In Malus hupehensis, 
indole-3-butanoic acid (IBA) treatment induces adventi-
tious lateral rooting, probably via the WOX11 pathway 
(Mao et al. 2018). In radish (Raphanus sativus), WOX11-
mediated adventitious lateral roots initiate from the 
cambium of the storage taproot upon wounding (Aliaga 
Fandino et al. 2019). In rice, there are two types of lateral 
roots: S-type lateral roots that are short and thin and 
lose their ability to produce higher-order lateral roots; 
and L-type lateral roots that are long and thick and are 
able to further produce lateral roots. Wild-type rice 

predominantly produces S-type lateral roots from the 
primary root, while the L-type lateral roots are induced 
upon root tip cutting or stress treatment of the primary 
root via a process involving WOX11 in addition to other 
WOX genes (Kawai et al. 2022). It will be interesting to 
further investigate whether the initiation of S-type lat-
eral roots in rice is similar to that of the acropetal lateral 
root in Arabidopsis and does not require WOX11 (Zhao 
et al. 2009; Zhu et al. 2012), and whether the L-type lat-
eral roots are similar to the WOX11-mediated adventi-
tious lateral roots in Arabidopsis. In addition, WOX11 
might be an efficient molecular tool for the improve-
ment of the root system in response to diverse stress soil 
conditions in rice (Chen et  al. 2015; Cheng et  al. 2016) 
and Populus (Wang et  al. 2019). Overall, the WOX11-
mediated adventitious lateral rooting pathway might 
contribute to the plasticity of root system formation in 
many plant species.

Role of WOX11 in callus formation
Tissue culture is a widely used plant biotechnology 
for vegetative propagation (Ikeuchi et  al. 2019; Skoog 
and Miller 1957). Usually, at least two types of cal-
lus can form during tissue culture of explants, i.e., 
embryonic callus and shooty/rooty callus (Ikeuchi 
et  al. 2013). Here, we summarize the roles of WOX11 
in shooty/rooty callus (hereafter referred to as callus). 
In Arabidopsis, callus initiates from detached explants 
in response to a high-auxin-to-low-cytokinin ratio on 
callus-inducing medium (CIM). The regeneration-com-
petent cells that initiate callus are those that are able to 
initiate lateral or adventitious roots, i.e. vascular adult 
stem cells including xylem-pole pericycle, procam-
bium, and some vascular parenchyma cells (Atta et al. 
2009; Che et al. 2007; Hu et al. 2017; Liu et al. 2014b; 
Sugimoto et al. 2011, 2010). Callus is able to regenerate 
shoots in response to a high-cytokinin-to-low-auxin 
ratio on shoot-inducing medium (SIM) (Cheng et  al. 
2013; Dai et  al. 2017; Gordon et  al. 2007; Iwase et  al. 
2017; Kareem et al. 2015; Meng et al. 2017; Zhang et al. 
2017), or to regenerate roots in response to a low auxin 
concentration on root-inducing medium (RIM) (Yu 
et al. 2017). Therefore, callus is a group of pluripotent 
cells that is competent for de novo organ regeneration, 
i.e., either root regeneration or shoot regeneration. The 
formation of callus in Arabidopsis borrows the lateral 
or adventitious root organogenesis pathway in plants 
(Duclercq et  al. 2011; Fan et  al. 2012; He et  al. 2012; 
Liu et  al. 2014b; Sugimoto et  al. 2011, 2010), and the 
cellular structure of callus on CIM resembles that of 
the root primordium or the root apical meristem (Hu 
et  al. 2017; Motte et  al. 2014; Sugimoto et  al. 2010; 
Zhai and Xu 2021). However, cell division in the root 
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primordium or the root apical meristem is strictly and 
developmentally controlled, while cell division is more 
extensive in callus and is stimulated by a high concen-
tration of exogeneous auxin.

In Arabidopsis, the cell fate transition during cal-
lus initiation is similar to that during adventitious root 
initiation (Fig.  1C). In callus forming on CIM, auxin 
promotes the expression of WOX11 during the cell 
fate transition from regeneration-competent cells to 
callus founder cells (Hu et  al. 2017; Liu et  al. 2014b). 
Then WOX11, together with auxin, activates LBD16 
and WOX5/7 expression during the division of callus 
founder cells to form the callus primordium (Hu and 
Xu 2016; Liu et al. 2018a, Liu et al. 2014b; Sheng et al. 
2017). LBD16 could alternatively be activated by the 
lateral rooting pathway involving the calcium (Ca2+) 
signaling module CALMODULIN IQ-MOTIF CON-
TAINING PROTEIN (CaM–IQM), INDOLE-3-ACETIC 
ACID INDUCIBLE14 (IAA14) and 19, and ARF7 and 19 
(Fan et  al. 2012; Shang et  al. 2016; Zhang et  al. 2022). 
Besides LBD16 and WOX5/7, many root stem cell-
related genes are also highly induced during the forma-
tion of the callus primordium, including PLETHORA1 
and 2 (PLT1/2) and SCARECROW (SCR) (Fan et  al. 
2012; Gordon et al. 2007; Hu et al. 2017; Kareem et al. 
2015; Kim et al. 2018; Liu et al. 2018a, Liu et al. 2014b; 
Sugimoto et al. 2010; Zhai and Xu 2021). PLT3/5/7 are 
expressed during all stages of callus formation (Kareem 
et  al. 2015). The loss or inhibition of the above key 
genes may result in the loss of pluripotency in callus, 
leading to shoot and/or root regeneration defects (Fan 
et al. 2012; Gordon et al. 2007; Hu et al. 2017; Hu and 
Xu 2016; Kareem et al. 2015; Kim et al. 2018; Liu et al. 
2018a, Liu et  al. 2014b; Sheng et  al. 2017; Sugimoto 
et al. 2010; Zhai and Xu 2021). After initiation, the cal-
lus primordium continues to undergo cell division and 
partial differentiation with patterning of tissues to form 
the mature callus. Our recent study using single-cell 
RNA sequencing indicates that mature callus has at 
least three cell layers: the outer cell layer, which resem-
bles the epidermis and lateral root cap of a root tip; the 
middle cell layer, which has quiescent center (QC)-like 
identity and is the pluripotent cell layer responsible 
for further organ regeneration; and the inner cell layer, 
which is similar to the vascular initial cells of the RAM 
(Zhai and Xu 2021). Therefore, the pluripotent cells 
for organ regeneration could be governed by the QC-
like identity and are predominantly maintained in the 
middle cell layer (Zhai and Xu 2021). Additionally, the 
formation of callus, its acquisition of pluripotency, and 
subsequent organ regeneration require the cooperation 
of the epigenetic network that regulates the expression 
of the above key genes (He et  al. 2012; Ishihara et  al. 

2019; Kim et al. 2018; Lee et al. 2021, 2019, 2018b; Wu 
et al. 2022; Zhao et al. 2020).

Among the above-ground tissues of rice, only the 
immature region of the leaf (the leaf base) and the node 
of the stem are able to form callus; it cannot initiate 
from the mature region of the leaf or the internode of 
the stem, because the vascular adult stem cells are fully 
differentiated into functional tissues and are not main-
tained during the maturation of above-ground organs 
(Hu et  al. 2017). This differs from the Arabidopsis 
mature leaf, which retains vascular adult stem cells and 
the ability to initiate callus throughout its whole life (Hu 
et al. 2017). In rice, callus can initiate from the immature 
bundle sheath at the leaf base, and from the phloem-pole 
pericycle cells in the root (Hu et al. 2017). The phloem-
pole pericycle cells are also responsible for lateral root 
initiation in rice. The cell fate transition from regener-
ation-competent cells (i.e. immature bundle sheath and 
phloem-pole pericycle) to callus founder cells in rice 
also requires WOX11, and WOX5 is highly expressed in 
the callus primordium and mature callus, similar to the 
situation during callus initiation in Arabidopsis (Hu et al. 
2017) (Fig.  1D). In addition to WOX11, the OsIAA11-
mediated lateral root initiation pathway contributes to 
callus initiation in rice roots (Guo et  al. 2018). Over-
all, the molecular pathway for callus initiation in rice 
and Arabidopsis share many similar molecular mod-
ules, while the tissues/cells that are able to initiate cal-
lus are dependent on the species-specific developmental 
program.

Evolutionary route of WOX genes
The WOX family genes in Arabidopsis can be grouped 
into three clades on the basis of their encoded domains 
and motifs, i.e. the ancient-clade WOX (AC-WOX) genes, 
the intermediate-clade WOX (IC-WOX) genes, and the 
WUS-clade WOX (WC-WOX) genes (Ge et al. 2016; van 
der Graaff et al. 2009; Haecker 2004; Nardmann and Werr 
2012; Zhang et  al. 2010) (Fig.  2A-G). Arabidopsis AC-
WOX genes, including WOX10, WOX13, and WOX14, 
encode proteins with the typical N-terminal domain of 
WOX (NTDW) and the AC-type homeodomain (AC-
HD) with the typical YNWFQNR sequence (Fig.  2A, 
B, E). Arabidopsis IC-WOX genes, including WOX11, 
WOX12, WOX8, and WOX9, encode proteins with a 
typical C-terminal domain of WOX (CTDW) and the IC-
type homeodomain (IC-HD) with the typical FYWFQNR 
sequence (Fig.  2A, C, F). Arabidopsis WC-WOX genes, 
including WUS and WOX1 to WOX7, encode proteins 
with the typical WUS box and the WC-type homeodo-
main (WC-HD) with the typical FYWFQNH sequence 
(Fig.  2A, D, G). WOX genes are present in almost all 
green plants from algae to seed plants (see summary in 
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Fig.  2A). Because the combination of domains of WOX 
proteins differ among different species, we here classify 
WOX genes mainly based on their homeodomain (HD).

The genomes of the chlorophytes Ostreococcus lucima-
rinus and Ostreococcus tauri (Derelle et al. 2006; Palenik 
et al. 2007), the charophyte Spirogloea muscicola (Cheng 
et  al. 2019), and the bryophytes Physcomitrella patens 
(Lang et  al. 2018) and Marchantia polymorpha (Bow-
man et al. 2017) encode only AC-WOX proteins with the 
AC-HD and NTDW (Fig. 2A, B, E).

The genome of the lycophyte Selaginella kraus-
siana (Ge et  al. 2016) contains a typical AC-WOX 
gene SkWOX13d encoding a protein with the NTDW 
and AC-HD, and some AC-WOX genes (SkWOX13a, 
SkWOX13c, and SkWOX13e) encoding proteins 
with only the AC-HD (Fig.  2A, B, E). Interestingly, 
SkWOX13b encodes a chimeric protein with a combi-
nation of the NTDW, AC-HD, and CTDW (Fig. 2A-C, 
E); and SkWOX11c encodes a chimeric protein with the 
NTDW and IC-HD (Fig. 2A, B, F). Both SkWOX11a and 
SkWOX11b encode proteins containing only a HD with 

Fig. 2  Domain evolution of WOX family proteins. A Evolution of green plants, showing predicted emergence of domains and combination of 
domains (indicated by +) in WOX family proteins. WOX proteins and their domains in Ostreococcus lucimarinus, Ostreococcus tauri, Spirogloea 
muscicola, Physcomitrella patens, Marchantia polymorpha, Selaginella kraussiana, Ceratopteris richardii, and Arabidopsis thaliana are shown. B–H 
Alignment of NTDW (B), CTDW (C), WUS box (D), AC-HD (E), IC-HD (F), WC-HD (G), and other HD (H). Red boxes indicate the specific sequences in 
HD
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a YYWFQNR (or YYWFNKR) sequence that appears 
to be transitional between the ancient (YNWFQNR) 
and the intermediate (FYWFQNR) clades (Fig. 2A, H). 
Therefore, IC-WOX is only partially established and 
WC-WOX is not present in the lycophyte S. kraussiana.

In the fern Ceratopteris richardii (Nardmann and Werr 
2012), the AC-WOX gene CrWOX13b encodes a protein 
with the AC-HD (Fig.  2A, E), and the IC-WOX genes 
CrWOXa and CrWOXb encode IC-HD (Fig. 2A, F). The 
CrWOX13a gene encodes a chimeric protein with the 
NTDW, AC-HD, and CTDW (Fig.  2A-C, E). The WC-
WOX gene CrWUL encodes a protein with the WC-HD 
and WUS box (Fig. 2A, D, G).

It seems that the NTDW, which is closely associated 
with the AC-HD, is notably ancient and might be pre-
sent in the AC-WOXs in most green plants. The CTDW 
seems to have arisen in the common ancestor of vascular 
plants (lycophytes, ferns, and seed plants) associated with 
AC-WOX proteins. After the appearance of seed plants, 
the CTDW became associated with the IC-HD, thereby 
forming the typical IC-WOX proteins in seed plants. 
The WUS box probably arose in the common ancestor of 
ferns and seed plants, and is closely associated with the 
WC-HD in WC-WOX proteins.

Overall, the typical AC-WOX protein structure with 
the combination of the NTDW and AC-HD is an ancient 
structure in green plants. The typical IC-WOX protein 
structure with the combination of the IC-HD and CTDW 
is only present in seed plants, although IC-HD and 
CTDW are separately present in lycophytes and ferns. 
The typical WC-WOX protein structure with the combi-
nation of the WC-HD and WUS box is present in ferns 
and seed plants.

Although the IC-WOX gene CrWOXa in the fern C. 
richardii encodes a protein with the IC-HD and not 
the CTDW, it also plays a role in the establishment of 
the root founder cell (also known as the root apical 
mother cell in ferns) (Fig.  1E). CrWOXa is specifically 
expressed in both adventitious and lateral root founder 
cells (Nardmann and Werr 2012; Yu et al. 2020). Auxin 
is the key hormone that induces the initiation of adven-
titious and lateral roots by directly activating CrWOXa 
expression via AuxREs in its promoter (Yu et al. 2020). 
Exogenous application of artificial auxin (e.g. 2,4-dichlo-
rophenoxyacetic acid (2,4-D) or picloram) can induce 
ectopic CrWOXa expression and enhance rooting (Yu 
et al. 2020). The division of the root founder cell results 
in the establishment of the tetrahedral root apical cell 
with four division planes, giving rise to three proximal 
merophytes and a distal merophyte (Hou and Blanca-
flor 2009; Hou and Hill 2004, 2002). The distal mero-
phyte serves as the root cap initial cell, and the proximal 
merophytes divide to form all the root cells except the 

root cap (Hou and Blancaflor 2009; Hou and Hill 2004, 
2002). During the division of the root founder cell to 
form the root apical cell and merophytes, CrWOXa 
might activate the expression of the WC-WOX gene 
CrWUL, which is restricted to the proximal merophytes 
(Nardmann and Werr 2012; Yu et  al. 2020). Therefore, 
the auxin-CrWOXa-CrWUL pathway in root initiation 
in C. richardii is similar to the auxin-WOX11-WOX5 
pathway in adventitious root initiation in Arabidopsis. It 
has been hypothesized that the IC-WOX gene may have 
been recruited in the root founder cell in the common 
ancestor of ferns and seed plants for auxin-induced root 
initiation (Yu et al. 2020).

Conclusion and perspectives
In conclusion, Arabidopsis WOX11 plays a key role in 
founder cells to initiate new organs during the regen-
eration of adventitious roots from detached leaves, the 
regeneration of adventitious lateral roots from wounded 
primary roots, and callus formation in tissue culture. The 
overall role of WOX11 is to establish the founder cells 
guided by auxin, and promote the transition of founder 
cells into the root/callus primordium. However, many 
questions remain unanswered. For example, WOX11 is 
a direct target of the auxin signaling pathway, but why 
does auxin activate WOX11 in root/callus founder cells 
and not in other cell types (e.g. mesophyll cells)? Which 
ARF(s) is/are responsible for WOX11 activation in root/
callus founder cells? What is the molecular mechanism 
that ensures that WOX11 is repressed in the root/callus 
primordium? How does WOX11 cooperate with auxin 
and other gene networks to initiate the root/callus pri-
mordium? Is WOX11 involved in sub-cellular regulation 
of plant regeneration? WOX11 is also expressed in the 
proto-xylem in the root tip (Liu et al. 2014b; Sheng et al. 
2017), but what is its function in these cells? It is impor-
tant to address all these questions to understand the role 
of WOX11 in plant regeneration and other developmen-
tal processes.

The role of WOX11 in regeneration in Arabidopsis 
might be inherited from its role in root founder cell 
establishment in the common ancestor of seed plants 
and ferns. Besides its role in regeneration, WOX11 is 
also involved in a wide range of plant developmental 
processes. In rice, for example, it is involved in root cap 
development (Wang et  al. 2014), regulation of above-
ground tissues (Cheng et  al. 2018), and regulation of 
tiller angle (Hu et  al. 2020; Y. Li et  al. 2020b; Zhang 
et  al. 2018a). Further studies should explore the com-
mon and specific roles of WOX11 in different develop-
ment processes. Furthermore, it will be interesting to 
study the roles of WOX genes encoding proteins with 
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the IC-HD or CTDW in lycophytes to discover their 
ancient roles in vascular plant evolution (Ge et  al. 
2016), and to compare the regenerative mechanism and 
stem cell activities in animals and plants (Serrano-Ron 
et al. 2021; Yan et al. 2020).
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