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Abstract 

Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by multiple genetic and environmental 
factors. Numerous genes are implicated in the etiology of IBD, but the diagnosis of IBD is challenging. Here, XGBoost, 
a machine learning prediction model, has been used to distinguish IBD from healthy cases following elaborative 
feature selection. Using combined unsupervised clustering analysis and the XGBoost feature selection method, we 
successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy. The 
signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system. 
The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and 
health status. Therefore, this study reveals potential IBD-related biomarkers that facilitate an effective personalized 
diagnosis of IBD.
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Background
Inflammatory bowel disease (IBD), including ulcerative 
colitis (UC) and Crohn’s disease (CD), is an idiopathic 
inflammatory bowel disease that heavily interferes with 
people’s quality of life (Rutgeerts et  al. 2009). Ulcera-
tive colitis unfolds the continuous inflammation of the 
colonic mucosa and submucosa, which usually involves 
the rectum first and gradually spreads to the whole colon, 
while Crohn’s disease can involve the whole digestive 
tract, which is a discontinuous full-thickness inflamma-
tion, most often involving the terminal ileum, colon and 
perianal area (Feagins et al. 2011, Ordas et al. 2012). IBD 
patients are usually accompanied by disrupted stem cell 
dynamics and impaired epithelial regeneration capac-
ity (Krishnan et  al. 2011, Olafsson et  al. 2020). Chronic 
inflammation can proceed to irreversible tissue destruc-
tion unless appropriate therapy is provided (Hosseinkhani 

et al. 2020). While the first step to treat IBD is to ease the 
pain, reduce inflammation, and facilitate tissue repair and 
regeneration (De Vry et al. 2007). Clinical data combined 
with mouse colitis models reveals that many important 
signaling pathways promote mucosal regeneration (Berg-
strom et  al. 2016, Han et  al. 2020, He et  al. 2018). For 
example, protease-activated receptor 2 (PAR2) signaling 
can mediate colonic mucosal regeneration through the 
stabilization of YAP (He et  al. 2018). Clinical trials with 
consideration of mucosal regeneration and immune mod-
ulation may have promising results in treating IBD (Pak 
et al. 2018).

Genetic, microbial, environmental, and immunoregula-
tory factors have been suggested to contribute to IBD, but 
the exact cause of which is still unknown (Graham and 
Xavier 2020, Kiesslich et al. 2012). Thus, the identification 
of cellular and molecular mechanisms that contribute to 
different subtypes and developing phases of IBD is essen-
tial for developing targeted therapies (Eftychi et al. 2019, 
Matsukawa et  al. 2016). Differentially expressed genes 
and pathways have been identified between inflamed and 
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healthy control tissues of IBD patients, such as NF-κB, 
TNF-α, immune response, proinflammatory cytokines, 
and chemokines (Allen et al. 2012, Gadaleta et al. 2011). 
However, till now there are no ideal biological markers 
for IBD due to the complex genetic background and envi-
ronmental factors (Khaki-Khatibi et al. 2020).

Many high-throughput experimental IBD data have 
been analyzed with various machine learning meth-
ods (Gubatan et  al. 2021). By integrating 30 gene fea-
tures and training with 310 samples (269 IBD patients 
and 41 healthy controls), an Artificial Neural Network 
and molecular prognostic score system-based classifi-
cation model was built to achieve an Area Under Curve 
(AUC) above 0.950 (Li et  al. 2020). Isakov et  al.’s model 
achieved an accuracy [(true positive + true negative) / 
(positive + negative)] of 0.808 using 16,390 genes on 229 
IBD patients and 90 healthy controls with Random Forest 
Algorithm (Isakov et  al. 2017). Using a random forests-
based classification model, Han et al. introduced a novel 
pathway-based approach to distinguish UC and CD and 
received the best AUC of 0.764 on the validation sets 
(Han et al. 2018). However, most IBD-related datasets are 
limited by the small sample size, high dimensions, and 
severe category imbalance, which bring great challenges 
to the integration of the transcriptomic data of IBD 
cohorts (Lloyd-Price et al. 2019, Pittayanon et al. 2020).

Machine learning has facilitated the diagnosis and risk 
prediction of IBD, but there was considerable variability 
in the performance of the different algorithms across the 
various cohorts (Gubatan et al. 2021). A desirable model 
should perform similarly even with new cohorts. EXtreme 
Gradient Boosting (XGBoost), a wildly used tree-based 
machine learning ensemble algorithm, is a gradient boost-
ing-based software library for supervised classification 
(Chen and Guestrin 2016). This algorithm shows a bal-
ance between prediction performance and explainability, 
which indicates the ability of machine learning algorithms 
to explain or justify the results in terms that are under-
standable by humans (Al’Aref et al. 2020, Chen and Gues-
trin 2016). XGBoost is a common choice for dealing with 
the classification problem of multiple diseases, such as 
Parkinson’s disease (Gao et al. 2018), colon cancer (Kop-
pad et  al. 2022), and breast cancer (Thalor et  al. 2022). 
Due to its simplicity, interpretability, and ability to han-
dle imbalanced datasets, we chose the XGBoost algorithm 
to construct our IBD classifier (Shorthouse et  al. 2018). 
This study presents a diagnostic model to analyze multi-
ple IBD cohorts. With the help of the Uniform Manifold 
Approximation and Projection (UMAP) and the XGBoost 
algorithm to select features, a 32-gene IBD signature 
was identified, which showed enrichment in neutrophil 
extracellular trap formation and cytokine signaling in the 
immune system. In comparison with the 54-gene-based 

model, 30-gene-based model, 21-gene-based model, Path 
1-2-3-based model, and the Top SHAP value gene-based 
model, our 32-gene-based model showed better perfor-
mance in the new cohort/samples of IBD patients.

Results
Identification of a 32‑gene signature associated with IBD
To search for new potential IBD biomarkers, we com-
bined unsupervised clustering analysis and the XGBoost 
feature selection method to exploit the gene signature 
from multiple cohorts and reduce the effect of a sin-
gle cohort for better detecting positive samples from 
multiple IBD cohorts. Specifically, we took advantage 
of the integration pipeline of Seurat, an R toolkit for 
single-cell genomics (Hao et  al. 2021), for preliminary 
feature selection with unsupervised clustering analysis. 
Four IBD-associated datasets, including GSE112366, 
GSE3365, GSE75214, and the data from the Integrative 
Human Microbiome Project (iHMP) were integrated, 
and 41,307 features across 705 samples were chosen 
(Fig.  1). Finally, 9 clusters were obtained using unsu-
pervised clustering, and most cohorts are distributed 
uniformly in distinct clusters (Fig.  2A-C). We conjec-
tured distinct clusters that might represent specific dis-
ease states and the marker genes that can thus be used 
to distinguish IBD from healthy controls. One hundred 
sixty-nine marker genes were filtered out using Seurat’s 
FindMarker function (Supplementary Table 1).

To single out our IBD signature, XGBoost was 
used for intensive feature selection. 251 samples of 
iHMP, 127 samples of GSE3365, and 167 samples of 
GSE112366 were used for model construction. From 
them, 22, 15, and 29 genes were identified with a SHap-
ley Additive exPlanations (SHAP) value above 0.05 
(Fig.  2D-F), respectively. Using intersection analysis, 
we screened out six genes (AQP9, CXCL1, MMP3, 
MUC1, APOL1, and MTATP6P1) (Supplementary 
Fig. 1) overlapping with the 169 marker genes (Supple-
mentary Table  1). A higher SHAP value would imply 
higher feature importance. We added 6 and 3 selected 
genes with the SHAP value above 0.2 in the GSE3365 
and GSE112366-based XGBoost feature selection. As 
iHMP is the most comprehensive public IBD transcrip-
tomic data (Lloyd-Price et  al. 2019), a higher weight 
was given to the selected genes obtained from iHMP. 
We added 22 genes with the SHAP value above 0.05 in 
the iHMP-based XGBoost feature selection. Finally, we 
obtained a 32-gene set, and these genes are referred to 
as the IBD signature (Supplementary Table 2). Further-
more, the patients were clustered into several clusters 
based on the 32 features, and the control, UC and CD 
patients could be separated in GSE3365 and GSE75214 
(Supplementary Fig. 2 A, B).
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The 32‑gene signature is mainly associated with immune 
response
To confirm the significance of the 32-gene signature 
in IBD prediction, a gene expression heatmap of these 
genes was performed in all four cohorts and seven addi-
tional IBD cohorts (GSE53306, GSE38713, GSE1152, 
GSE9452, GSE10616, GSE22619, and GSE6731) (Fig. 3A-
K). In the iHMP cohort, the most abundant genes with a 
similar expression pattern were APOL1, AQP9, CCL24, 
COL4A1, CXCL1, CXCR1, FCGR3B, IFITM3, and 

MMP3. For example, the upregulation of AQP9 was 
identified in all the datasets. Further, we observed simi-
lar expression patterns in other cohorts. Across all data 
sets, we removed genes with missing expression levels 
and then normalized gene expression. Using Metascape, 
we analyzed the function of each gene and performed 
Gene Ontology (GO), Reactome Gene Sets, and KEGG 
Pathway enrichment analyses (Fig. 3L). As expected, the 
GO enrichment analysis revealed the enrichment of neu-
trophil extracellular trap formation (hsa04613). We also 

Fig. 1  Workflow of the construction of the XGBoost-based classification model. After the IBD dataset was collected, the XGBoost algorithm and 
UMAP were employed to select important features (32-gene signature). Then, ten-fold cross-validation tests were set to compare the performance 
of the models between two feature sets. Finally, The XGBoost method was used to compare the performance of the XGBoost-based classification 
model on unused data and predict the probability of IBD for each case
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discovered the enrichment of cytokine signaling in the 
immune system (R-HSA-1280215) in the 32-gene set. For 
this analysis, AQP9, FCGR3B, H2AZ1, and H2BC5 were 
clustered into neutrophil extracellular trap formation, 
while CXCL1, MMP3, MUC1, SERPINB2, and IFITM3 
were clustered into cytokine signaling in the immune 
system.

The 32‑gene signature gives a more accurate IBD 
classification
Based on the 32-gene signature, an XGBoost-based clas-
sification model was built. The samples in the iHMP, 
GSE112366, GSE38713, GSE3365, GSE1152, and 
GSE9452 datasets were taken together for model training 
and testing. The dataset is split into training, validation, 
and testing sets in the ratio of 34.3%: 14.7%: 21%. Among 
the 961 samples included in the study, 462 samples were 
used for model training, validation, and testing, 288 sam-
ples (30% samples of all datasets) were used in the second 
testing step, and the other samples were not used in this 
study. Then, the feature importance score of each gene 
was calculated with SHAP on the 32-gene-based model 
(Fig. 4A).

We compared Accuracy, AUC, Recall, Precision, F1, 
and Kappa between the XGBoost-based classification 
models constructed using the 32-gene signature, the 
54 FDA-approved and failed target genes (Sahoo et  al. 
2021) (Supplementary Table  3), the 30 genes from Li 

et al. (Li et al. 2020), the 21 genes from Yuan et al. (Yuan 
et al. 2017), the Path 1-2-3 genes (Sahoo et al. 2021) and 
Top SHAP value genes with high SHAP value directly 
selected from XGBoost (top 16 genes of iHMP, top 8 
genes of GSE112366, and top 8 genes of GSE3365). We 
found that the XGBoost-based classification model with 
the 32-gene signature obtained better performance than 
the XGBoost-based classification model with the 54 IBD 
target genes: the 32-gene signature yielded 0.8953 Accu-
racy, 0.9653 AUC, 0.9292 Recall, 0.8741 Precision, 0.8991 
F1 and 0.7906 Kappa; the 54 IBD target genes gave 
0.8804 Accuracy, 0.9521 AUC, 0.9246 Recall, 0.8551 Pre-
cision, 0.8863 F1 and 0.7607 Kappa; the 30-gene-based 
model produced 0.8657 Accuracy, 0.9390 AUC, 0.9243 
Recall, 0.8292 Precision, 0.8734 F1 and 0.7315 Kappa; 
the 21-gene-based model generated 0.8533 Accuracy, 
0.9294 AUC, 0.8654 Recall, 0.8555 Precision, 0.8557 F1 
and 0.7065 Kappa; the Path 1-2-3-based model produced 
0.8845 Accuracy, 0.9688 AUC, 0.9409 Recall, 0.8522 Pre-
cision, 0.8914 F1 and 0.7689 Kappa; and the Top SHAP 
value gene-based model generated 0.9038 Accuracy, 
0.9636 AUC, 0.9333 Recall, 0.8858 Precision, 0.9073 F1 
and 0.8075 Kappa (Fig. 4B). Therefore, our feature selec-
tion strategy could contribute to an improvement with 
considerable performance. However, the XGBoost algo-
rithm achieved better performance on testing set than 
several other common algorithms, except for Random 
Forest algorithms (Supplementary Table 4).

Fig. 2  Identification of the IBD-related 32-gene signature. A UMAP visualization of the integrated samples (GSE112366, GSE3365, GSE75214, and 
iHMP), color coded by samples from which cohort. B UMAP showing 9 clusters, color coded with cluster identities. C UMAP of GSE112366, GSE3365, 
GSE75214, and iHMP, color coded with cluster identities. SHAP values (feature importance scores) were calculated with XGBoost feature selection for 
iHMP (D), GSE3365 (E), and GSE112366 (F), respectively. X-axis represents gene names, Y-axis represents SHAP values
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The 32‑gene‑based model achieves a better prediction 
of IBD
The trained XGBoost-based classification model was 
applied to the unused transcriptomic data. First, we cal-
culated the accuracy (ranging from 0.3500–0.9167) and 
the confusion matrix in the individual datasets sepa-
rately using the 32-gene signature model (Supplementary 
Fig. 2C-N). We found that the accuracy of the GSE83687 
was even lower for the control samples of this cohort that 
were harvested from normal noninflamed bowel from 
patients with colon cancer. For the rest of the analyses, 
the data from the unused part of the training cohorts 
(unused thirty percent data of iHMP, GSE112366, 
GSE38713, GSE3365, GSE1152, and GSE9452) and the 
remaining cohorts (GSE75214, GSE10616, GSE22619, 
and GSE6731) were combined for the following study. 
We compared the predictive accuracy between the 
XGBoost-based classification model constructed with 
the 32-gene signature, 54 IBD target genes, 30-gene sig-
nature, 21-gene signature, Path 1-2-3-gene signature, and 
Top SHAP value-gene signature, respectively. As shown 
in the confusion matrix, 32-gene-based model (0.8651 
Accuracy) (Fig.  4C) obtained a higher performance 
than 54-gene-based model (0.6436 Accuracy) (Fig.  4D), 
30-gene-based model (0.7958 Accuracy) (Fig.  4E), 
21-gene-based model (0.7197 Accuracy) (Fig.  4F), Path 
1-2-3-based model (0.8062 Accuracy) (Fig. 4G), and the 
Top SHAP value gene-based model (0.8235 Accuracy) 
(Fig.  4H). These results indicate that the 32-gene-based 
model performs better on the unused transcriptomic 
data than other models. The XGBoost-based classifi-
cation model also performed better than the Random 
Forest-based classification model with a 32-gene signa-
ture on unused transcriptomic data (Fig.  4C, I). Taken 
together, the XGBoost algorithm works better than other 
common algorithms in IBD prediction.

Once trained, the XGBoost-based classification model 
could be applied to new data. We calculated the IBD 
scores for all 288 testing samples with the estimator.pre-
dict_proba function of PyCaret, and 8 IBD score pictures 
for each patient were shown in Fig. 5A. The abscissa rep-
resents the number of dots. In the plot, the predicted 
probability for each sample being positive for IBD was 
displayed with yellow dots. IBD scores (numbers of yel-
low dots) range from 0 to 100, with a higher score indi-
cating a higher probability of developing IBD. A sample 

with more than 50 green dots was identified as a healthy 
control. A lower probability threshold was applied to 
higher-risk people. In the 32-gene-based model, when the 
probability threshold was reduced to 0.45, the correctly 
predicted IBD cases increased from 209 to 213. Subse-
quently, the accuracy of the 32-gene-based model slightly 
increased from 0.8651 to 0.8789 (Figs. 4C, 5B). We also 
observed that the accuracy (0.8512) of the 32-gene-based 
model was slightly decreased under the 0.55 probability 
threshold (Fig. 5C).

A 19‑gene subtype classification model can distinguish 
between UC and CD
To distinguish UC from CD, we constructed an XGBoost 
subtype classification model. We obtained subtype signa-
ture genes from iHMP (74 UC vs 126 CD) and GSE3365 
(26 UC vs 59 CD)-based XGBoost subtype feature selec-
tion. However, genes with SHAP values above 0.05 
showed no overlap with the 169 marker genes. Then, six 
genes were selected with the GSE3365-based XGBoost 
subtype feature selection with SHAP values above 0.2. 
Even if only two cohorts were used for XGBoost subtype 
feature selection, a slightly higher weight was also given 
to the iHMP cohort, and 13 genes were achieved with 
the SHAP value above 0.1 in the iHMP-based XGBoost 
subtype feature selection. However, the heatmaps of 
four cohorts presenting the expression pattern of the 19 
selected genes (ARRDC4, CCND2, CD4, CD59, ERI3, 
FKBP5, HLA-DQA2, HLA-H, IGHG1, IGKV2D-40, 
KDM8, KLF6, MT1M, PEMT, SH3YL1, SIGIRR, 
SLC37A2, SUPT4H1, and TSKU) exhibited no significant 
differences between UC and CD (Fig.  6A-D). Further-
more, the patients were clustered into several clusters 
based on the 19 features, and the control, UC and CD 
patients could be separated in GSE3365 and GSE75214 
(Supplementary Fig.  3A, B). Due to the distinct expres-
sion pattern, the functional analysis of this gene set did 
not indicate to be clinically meaningful (Supplementary 
Table 5). Meanwhile, we found no intersections between 
the 19 gene set and the gene sets of 70 genes (Park et al. 
2021) and 5 genes (Han et al. 2018) of previous subtype 
classification models. Still, 19 genes were used for the 
XGBoost subtype classification model building.

Based on the 19 selected genes, 54 IBD target genes, 
and 5 previously reported genes (Han et al. 2018), we con-
structed the subtype classification model with iHMP (74 

(See figure on next page.)
Fig. 3  The 32-gene signature shows similar expression patterns in all cohorts and are mainly related to immune response. A iHMP, (B) GSE75214, 
(C) GSE3365, (D) GSE10616, (E) GSE6731 (F) GSE1152, (G) GSE112366, (H) GSE53306, (I) GSE38713, (J) GSE9452, and (K) GSE22619. Row Z-score 
gene expression heatmaps were generated using Log2(TPM + 1) values of the iHMP cohort and other cohorts’ microarray expression profiles. L 
Gene-ontology analysis using metascape (http://​metas​cape.​org) of the 32-gene signature. The red dashed lines indicate upregulated genes

http://metascape.org
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Fig. 3  (See legend on previous page.)
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UC vs. 126 CD), GSE3365 (26 UC vs. 59 CD), GSE10616 
(10UC vs. 32 CD), GSE6731(9 UC vs. 19 CD). In order 
to oversample the UC samples, the SMOTE algorithm 
was used. The 19-gene subtype classification model per-
formed better than the other three models (the 32-gene, 
54-gene, and 5-gene subtype classification model) 
on Accuracy, AUC, Recall, Precision, F1, and Kappa 

(Fig.  6E). Moreover, as shown in the confusion matrix, 
19-gene subtype classification model (0.6395 Accuracy) 
gave a higher performance than the 32-gene subtype 
(0.5872 Accuracy), 54-gene subtype (0.5930 Accuracy), 
and 5-gene subtype classification model (0.4593 Accu-
racy) on unused transcriptomic data (Fig. 6F-I).

Fig. 4  The 32-gene-based model achieves a better performance than other models. A SHAP value (feature importance score) of the 32 genes. B 
The histogram comparison of the Accuracy, AUC, Recall, Precision, F1 and Kappa of two XGBoost-based classification models, those values range 
between 0 and 1 (0, poor performance; 1, good performance). C-H Confusion matrix of 32, 54, 30, 21, Path 1-2-3, and Top SHAP value gene-based 
XGBoost classification models with samples that were not used for training and validation. I Confusion matrix of the 32-gene-based Random Forest 
classification with samples that were not used for training and validation. Confusion matrix detailing the true positive (right lower), true negative 
(left upper), false positive (right upper), and false negative (left lower) predictions from XGBoost-based classification model. Accuracy = (true 
positive + true negative) / total



Page 8 of 13Yu et al. Cell Regeneration            (2023) 12:8 

Discussion
In this study, we successfully identified a 32-gene signature 
for IBD diagnosis using Seurat-based unsupervised clus-
tering analysis and the XGBoost feature selection method. 
IBD is characterized by a dysregulated mucosal immune 
system (Punit et  al. 2015), and the association between 
lipid mediators and cytokines has been extensively stud-
ied (Hamid and Tulic 2009). Among the 32 genes, the 
role of many of them in IBD has been previously dem-
onstrated, such as AQP9 (Yu et  al. 2021), BAHD1 (Zhu 
et al. 2015), BASP1 (Hong et al. 2018), BLCAP (Yuan et al. 
2017), CALM3 (Park et al. 2015), CCL24 (Manousou et al. 
2010), COL4A1 (Eshelman et  al. 2020), CXCL1 (Cheng 
et al. 2019), CXCR1 (Ohtani et al. 2002), FAM118A (Kho-
rasani et  al. 2020), FCGR3B (Asano et  al. 2013), FCRL3 
(Martinez et  al. 2007), GALNT2 (Nimmo et  al. 2011), 
H2AFZ  (alias:  H2AZ1) (Chen et  al. 2021), IFITM3 (Mo 
et al. 2013), IGHV3-9 (Yuan et al. 2021), MMP3 (Biancheri 
et  al. 2015), MUC1 (Pothuraju et  al. 2020), NFATC3 
(Frigerio et  al. 2021), SERPINB2 (Wei et  al. 2015), and 
ZNF207 (Yuan et al. 2017). However, the role of APOL1, 
BNC2, EIF3L, HIST1H2BD  (alias: H2BC5), HMMR, 
MTATP6P1, POMT1, PPP1R3E, PRPF8, RNF167, and 
WBP2 in IBD is unclear. Interestingly, PRPF8, a spli-
ceosome component involved in the pre-mRNA splic-
ing (Martinez-Gimeno et  al. 2003), was correlated with 

neutrophil chemotaxis and cellular response to lipid 
(GO:0030593 and GO:0071396). WBP2, a transcriptional 
coactivator of estrogen receptor alpha and progesterone 
receptor (Lim et  al. 2011), may play a role in neutrophil 
extracellular trap formation and cellular response to lipid 
(hsa04613 and GO:0071396). Those genes might be new 
potential markers for IBD. Our feature selection process 
can be used as a framework to identify potential biomark-
ers through comprehensive mining of public databases. 
However, biological experiments need to be performed to 
validate the function of these candidates in IBD.

We compared the performance of our XGBoost-based 
classification model among the 32-gene signature, the 54 
IBD target genes, the 30-gene signature, and the 21-gene 
signature in terms of Accuracy, AUC, Recall, Precision, 
F1, and Kappa. The 32-gene-based model showed better 
performance than other models on test samples. An ideal 
model should have an accurate prediction performance 
in untrained cohorts, and our XGBoost-based classifica-
tion model achieved a better accuracy (0.8651) in never 
trained cohorts/samples. Therefore, our model could 
achieve a robust prediction for the samples of multiple 
cohorts. However, our XGBoost subtype classification 
model with 19 selected genes still needs further improve-
ment, although it gave a better prediction (0.6395 Accu-
racy) than other models.

Fig. 5  The 32-gene-based model may predict well with a certain threshold. A The number of green dots indicates the possibility of health control, 
and the number of yellow dots indicates the possibility of IBD. The Y axis represents the ID of each sample, X axis represents the number of dots. B, 
C Confusion matrix for the 32-gene-based model with the probability threshold = 0.45 (B) and 0.55 (C)
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Based on the XGBoost-based classification model, we 
calculate the IBD scores of each sample. These results can 
be used for personalized treatment for each patient. The 
high values of IBD scores suggest that more attention is 
needed for the individuals. The judgment may be inac-
curate in patients with near 50 percent probability. It is 
also worth mentioning that the XGBoost-based classifi-
cation model can be adjusted by changing the probability 
threshold. A lower probability threshold would increase 
the number of patients identified as IBD and decrease 
the number identified as health control. Individuals can 
adjust this probability threshold to fit their health status.

Conclusions
In this study, we use machine learning to develop a 
32-gene signature for accurate prediction of IBD. We 
demonstrate a better performance of the 32-gene-based 
XGBoost model on transcriptomic data with multiple 
cohorts. Among the 32 genes, some have been reported 
to be associated with IBD development, but the others are 
new potential IBD biomarkers, such as APOL1, BNC2, 
EIF3L, HIST1H2BD, HMMR, MTATP6P1, POMT1, 
PPP1R3E, PRPF8, RNF167, and WBP2. We further show 
that adjusting the probability threshold can facilitate an 
effective personalized diagnosis of IBD.

Fig. 6  The 19-gene subtype classification model could distinguish between UC and CD. A-D Heatmaps show the gene expression of the 19 
selected genes in iHMP (A), GSE3365 (B), GSE10616 (C), and GSE6731 (D). E The histogram comparisons of the Accuracy, AUC, Recall, Precision, 
F1, and Kappa of two XGBoost-based classification models, those values range between 0 (poor performance) and 1 (good performance). F-I 
Confusion matrix for the 19-gene subtype classification model (F), the 32-gene subtype classification model (G), the 54-gene subtype classification 
model (H), the 5-gene subtype classification model (I)
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Methods
Data sources and organization
The transcriptomic data were downloaded from the 
Gene Expression Omnibus (GEO) database (GEO: 
GSE112366, GSE53306, GSE38713, GSE3365, GSE1152, 
GSE9452, GSE75214, GSE10616, GSE22619, GSE6731, 
and GSE83687) and the iHMP (Lloyd-Price et al. 2019). 
GEO databases were downloaded from GEO with the 
limma R package and GEO query (Barrett et  al. 2013). 
ComBat function of sva package was used to remove the 
batch effect for each cohort (Leek et al. 2012). A total of 
846 patients (182 controls and 664 IBD) were included 
in the study. Among the cohorts, 70% of the data of 
iHMP, GSE112366, GSE38713, GSE3365, GSE1152, and 
GSE9452 served as the training & validation data to 
construct the machine learning model, and the remain-
ing data of those cohorts and the data of GSE75214, 
GSE10616, GSE22619, and GSE6731 cohorts used as the 
test data to analyze the model’s accuracy. In this training-
validation set, 70% were in the training set, and 30% were 
in the validation set. iHMP, GSE3365, and GSE112366 
were used for feature selection.

Unsupervised clustering with UMAP clustering
The different sources and the data sampling impact 
may affect the identification of significantly differential 
genes. To minimize the impacts of cohort differences 
on the classification model, we combined the bulk data 
and selected characteristic genes that were not affected 
by sampling. Specifically, the FindIntegrationAnchors 
package was obtained to integrate GSE112366, GSE3365, 
GSE75214, and iHMP. Due to the small sample size, we 
set twenty dims. UMAP was run with the R package Seu-
rat (version 4.0) (Becht et  al. 2018). Patients were clus-
tered into several clusters. Finally, the FindAllMarkers 
function of Seurat (version 4.0) was used to identify the 
marker genes for each cluster used for AI model build-
ing (Butler et al. 2018). Among the clusters, marker genes 
with p_val_adj < 0.000000000000001 and avg_logFC > 0.5 
were selected as significant genes.

Feature selection with XGBoost
Before the feature selection and the model construc-
tion, each input data of the patient was normalized using 
MinMax to yield values between 0 and 1. This study 
calculated feature importance scores and performed 
feature selection with XGBoost Extreme Gradient Boost-
ing (XGBoost) on iHMP, GSE3365, and GSE112366, 
respectively (Chen and Guestrin 2016, Ogunleye and 
Wang 2020). We fed all detected genes of GSE3365 and 
GSE112366 to construct the XGBoost-based classifica-
tion model, respectively. On the other hand, 5000 top 
variable genes of iHMP cohort were screened with var 

function of the R package and these genes were used 
to construct the XGBoost-based classification model 
to reduce the input dimension. Genes with an abso-
lute SHAP value above 0.05 were selected in 3 cohorts. 
Then, genes with an absolute SHAP value above 0.2 
of iHMP, genes with an absolute SHAP value above 0.1 
of GSE3365, and genes with an absolute SHAP value 
above 0.1 of GSE112366 were selected. At last, an inter-
section was taken between these selected genes, and 
marker genes were identified in the Principal component 
analysis.

Feature importance, gene expression, and Gene Ontology 
analysis
In order to analyze feature importance, we used SHAP, 
a method for estimating instance-wise Shapley values 
that represent true estimates of the effects of each feature 
on a prediction (Lundberg et  al. 2020). Log2(TPM + 1) 
transformation was performed to normalize TPM val-
ues of each cohort. The microarray expression profiles of 
other cohorts were obtained from the Gene Expression 
Omnibus (GEO) public microarray database. The R sta-
tistical package (version 4.0.3) was used to handle miss-
ing values, scale normalization, and median centering. 
The heatmaps were created using the ComplexHeatmap 
R package (https://​github.​com/​joker​goo/​Compl​exHea​
tmap). The gene function annotation was conducted 
using Metascape software (https://​metas​cape.​org/​gp/​
index.​html#/​main/​step1) using default settings (Zhou 
et al. 2019).

XGBoost‑based classification model construction 
and Evaluation of the classification model
Based on the likelihood of FDA approval and failure 
(Sahoo et al. 2021), we collected 54 target genes of IBD. 
We also collected gene sets that are important for diag-
nosing IBD in Li et  al. study (Li et  al. 2020) and Yuan, 
et al. study (Yuan et al. 2017). Then, 32-gene signature, 
54 IBD target genes, 30-gene signature (Li et al. 2020), 
21-gene signature (Yuan et  al.  2017), Path 1-2-3-gene 
signature (Sahoo et al. 2021), and Top SHAP value-gene 
signature were fed into the Extreme Gradient Boost-
ing algorithm XGBoost (‘xgboost’ package in python), 
respectively. We fed our AI model with transcriptomic 
data and tested the constructed AI model with unused 
transcriptomic data. In order to avoid data imbalance, 
SMOTE function of imblearn package was used. In 
cases of uneven distribution of classes, tenfold cross-
validation was carried out to determine Accuracy, AUC, 
Recall, Precision, F1, and Kappa. We also calculated the 
accuracy in the individual datasets separately for the 
32-gene signature model.

https://github.com/jokergoo/ComplexHeatmap
https://github.com/jokergoo/ComplexHeatmap
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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The probability threshold and the IBD possibility for each 
patient
By manually adjusting the probability threshold of the pre-
dict_model function of PyCaret (https://​pycar​et.​org/) (Ali 
2020), the prediction result was changed. Based on the 
prediction score obtained with the predict_model function 
of PyCaret, each sample was indicated for IBD possibility.

Statistical analysis
R (https://​www.r-​proje​ct.​org/) and python (https://​www.​
python.​org/) were performed for statistical analysis of 
sequencing data. In XGBoost, “SHAP values” for each 
gene were calculated based on the SHAP package. The 
comparison was done using the student’s t-test or Wil-
coxon ranks test. The p_val_adj was calculated using the 
Bonferroni correction compared with all genes in the 
dataset (https://​satij​alab.​org/​seurat/​refer​ence/​findm​ark-
ers). Seurat (version 4.0) was obtained for quantification 
and Statistical analysis (https://​satij​alab.​org/​seurat/).

Abbreviations
AUC​: Area under the curve; GEO: Gene Expression Omnibus; IBD: Inflamma‑
tory bowel disease; iHMP: The Integrative Human Microbiome Project; SHAP: 
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Projection; XGBoost: XGBoost Extreme Gradient Boosting.
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