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Abstract 

The difficulties of injured and degenerated neurons to regenerate neurites and regain functions are more significant 
than in other body tissues, making neurodegenerative and related diseases hard to cure. Uncovering the secrets of 
neural regeneration and how this process may be inhibited after injury will provide insights into novel management 
and potential treatments for these diseases. Caenorhabditis elegans and Drosophila melanogaster are two of the most 
widely used and well-established model organisms endowed with advantages in genetic manipulation and live 
imaging to explore this fundamental question about neural regeneration. Here, we review the classical models and 
techniques, and the involvement and cooperation of subcellular structures during neurite regeneration using these 
two organisms. Finally, we list several important open questions that we look forward to inspiring future research.
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Background
Axons play a key role in transmitting nerve impulses 
generated by neuronal cell bodies to other neurons or 
effectors. Dendrites are mainly responsible for receiving 
impulses from other neurons and transmitting them to 
the cell body. When subjected to injury such as cutting, 
toxic insults, etc., the neurite breaks down, causing func-
tional impairment. Regeneration of proximal axons or 
dendrites is regulated by in vivo mechanisms. The regen-
erated neurite is expected to restore its original function. 

Therefore, neuronal regeneration mechanisms are essen-
tial for the maintenance of neuronal homeostasis.

As model animals, C. elegans and Drosophila have the 
advantages of clear genetic background, many progenies, 
and easy cultivation in the laboratory, which facilitates 
the study of neurite regeneration. Motor neurons and 
mechanosensory neurons of C. elegans are often used in 
the study of regeneration. For motor neurons, regenera-
tion is usually assessed as the proportion of growth cones 
formed within 24 h the proportion of neurons reaching 
their original location within 24 h, and the time required 
to form growth cones (Hammarlund et  al. 2009). For 
mechanosensory neurons, regeneration is often assessed 
as the length of neurites during regeneration (Wu 
et al. 2007). Dendritic arborization (da) neurons are often 
used as models of dendrite regeneration as sensory neu-
rons in Drosophila because of their location that facili-
tates laser axotomy (Sugimura et al. 2003).

Subcellular structures such as organelles, as essential 
executors of cell functions, provide guarantees for the 
normal operation of cells. Subcellular structures such 
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as cytoskeletal components, mitochondria, autophago-
somes, endosomes, endoplasmic reticulum, nucleus, 
ribosomes and extracellular matrix, all play important 
roles in C. elegans and Drosophila regeneration. In the 
RNAi-based screen in unc-70/ β-spectrin mutants for 
defective motor axon regeneration in C. elegans, at least 
50 conserved genes with growth-promoting or inhibit-
ing functions were identified (Nix et  al. 2014). p38 and 
JNK family MAP kinases associated with cytoskeleton 
dynamics have been shown to play critical roles in trig-
gering injury signaling (Nix et  al. 2011; Xiong et  al. 
2010). The dual-leucine zipper kinase 1 (DLK-1) is the 
most studied cellular intrinsic factor for axon regenera-
tion. The DLK-1 pathway is essential for regeneration of 
motor neurons in Caenorhabditis elegans. Eliminating 
the DLK-1 pathway inhibits regeneration, while activat-
ing it promotes regeneration (Hammarlund et al. 2009). 
The notion that the DLK-1 cascade can be activated by 
cytoskeleton disruption independent of calcium eleva-
tion has been confirmed using Drosophila and mam-
malian sensory neurons (Valakh et al. 2015; Valakh et al. 
2013). Activation of JNK-1 MAP kinase inhibits GABA 
neuronal regeneration. Notch and Wnt signaling path-
ways activated during development have also been impli-
cated in axon regeneration (Bejjani and Hammarlund 
2012). In addition, the conserved Arf Guanine-nucleotide 
Exchange Factor (GEF) EFA-6 was found to inhibit axon 
regrowth after laser surgery when using a laser injury 
model to screen mechanosensory neurons in C. elegans 
(Chen et al. 2011). In the laser injury model screening, it 
was also found that NMAT-2 uses its enzymatic activity 
to inhibit axon regeneration (Kim et al. 2018). Large-scale 
unbiased genetic screens for axon regeneration have not 
been performed in Drosophila. However, in the screen-
ing of genes regulated after axotomy, it was found that 
both Rtca and Archease, components of RNA repair and 
splicing pathways, have regulatory effects on axon regen-
eration (Song et  al. 2015). The PTEN-Akt pathway is 
important for both axonal and dendritic regeneration in 
Drosophila. Nevertheless, the different requirements for 
JNK signaling allow the mechanisms of Drosophila den-
dritic regeneration to be distinguished from axon regen-
eration (Brace and DiAntonio 2017; Stone et al. 2014).

This review summarizes the relevant mechanisms and 
recent progress of neurite regeneration. We illustrate the 
advantages of C. elegans and Drosophila as commonly 
used model organisms to study neurite regeneration. 
Laser surgery, as a standard method for cutting neurons 
of worms and Drosophila, provides convenience for the 
study of neurite regeneration. Subcellular structures such 
as organelles play a non-negligible role in regenerating 
axons and dendrites (Fig. 1).

Models and technologies
Caenorhabditis elegans
C. elegans is a well-established animal model for basic 
neurobiology study, with significant advantages. Funda-
mentally, its short-life cycle, small and transparent body 
have greatly accelerated and facilitated scientific stud-
ies. At the genetic and molecular level, C. elegans is the 
first multicellular eukaryotic organism whose genome 
has been fully sequenced, and both its genome and major 
molecular pathways are highly conserved with mammals. 
At the cellular level, the number and composition of C. 
elegans hermaphrodite are invariable within individuals, 
including 302 well-characterized neurons with diverse 
functions and morphologies (White et  al. 1986). These 
characteristics have made C. elegans an ideal model for 
investigating molecular and cellular mechanisms of neu-
rite regeneration. During the past decades of intensive 
study, two categories of neurons were set up as models 
for axon and dendrite regeneration, respectively.

Compared with dendritic regeneration, axonal regen-
eration has a more extended research history and deeper 
understanding. Two types of neurons, GABA motor 
neuron and mechanosensory neuron, are used most fre-
quently in this field. Specifically, 26 out of 302 neurons 
of the C. elegans nerve system are identified as GABA 
motor neurons, further characterized into three subtypes 
according to their synaptic outputs (Schuske et al. 2004). 
Among them, the dorsal- and ventral-innervated D-type 
motor neurons, which include six DD neurons and 13 VD 
neurons, are intensively used in axon regeneration stud-
ies (White et  al. 1986). Morphologically, the cell bodies 
of these neurons are aligned regularly along the ventral 
nerve cord, and a branch of their anterior axons forms 
commissures that run towards the dorsal nerve cord. The 
axons of fluorescent-labelled D-type motor neurons are 
apparent under a microscope (Bejjani and Hammarlund 
2012), making it a convenient target for axon injury like 
axotomy. Functionally, these neurons regulate the sinu-
soidal body movement of the nematode by relaxing the 
dorsal muscles when the ventral muscles are contracting. 
Hence, aside from directly observing the morphology of 
the neurons after axon injury, the coordinated movement 
of the animal can be seen as a reliable indicator of regen-
eration level.

The mechanosensory neuron (e.g., ALM and PLM) 
exhibits a longer axon than the GABA motor neu-
ron, extending along the anterior–posterior axis. These 
characteristics have made the neurons another befit-
ting model for axon injury and regeneration, and in a 
long distance and time scale compared with the GABA 
motor neurons. Comparing and contrasting the two 
types of neurons can diversify our understanding of axon 
regeneration and inspire ideas to investigate the more 
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heterogeneous mammalian nervous system. Further, 
the function of the touch receptor neurons may also be 
reflected in the corresponding locomotion of C. elegans 
(i.e., the gentle touch response), through the quantita-
tive experiment design and result analysis is much more 
complicated than it in the motor neurons (Vayndorf et al. 
2016).

Dendritic regeneration is an emerging research hot-
spot, and the PVD neuron draws the most attention in 
this field for its delicate structured dendritic trees. A 
typical PVD neuron has four degrees of dendrites. Its 

primary dendrite runs along the A-P axis from head to 
tail, and the secondary, tertiary, quaternary branches 
appear perpendicular to each other to form multiple 
candelabra-like units (Oren-Suissa et al. 2010). Its unique 
and highly organized dendrites made it an ideal object 
for studying dendrite development, organization, main-
tenance, and regeneration. Like axotomy, dendrotomy 
can be applied to the PVD neuron for investigating multi 
aspects of dendrite regeneration: including the re-elonga-
tion and the re-arborization and recovery of its function 
(Brar et al. 2022; Oren-Suissa et al. 2017).

Fig. 1  Regulators of neurite regeneration and associated subcellular structures in C. elegans and Drosophila. In red: negative regulators; In green: 
positive regulators
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Drosophila melanogaster
Drosophila is another powerful animal model used in 
research of neurite repair, and its dendritic arborization 
(da) sensory neuron is a favored injury model for both 
axon and dendrite. Generally, the Drosophila da neuron 
can be classified into four classes (class I-IV) based on 
the complexity of their dendrite pattern and can be fur-
ther divided into several subgroups according to their 
location (e.g., dorsal, ventral). Noticeably, the regenera-
tion after neurite injury exhibits different abilities and 
mechanisms among subgroups and between the central 
and peripheral nervous systems (CNS and PNS) (Rao 
and Rolls 2017; Vargas et al. 2020). These distinctions can 
specifically give inspiration for our understanding of the 
more complex nerve system in humans.

Class I, III, and IV da neurons are frequently used mod-
els for axon injury and repair study, and the axotomy 
using a two-photon laser is a well-established labora-
tory technique (Sugimura et  al. 2003). The response of 
the severed axon can be classified into three situations: 
regenerated, stalled, and degenerated, and can be further 
quantified using a widely-accepted method. For exam-
ple, the “regeneration index” is calculated by the increase 
of axon length divided by the distance between the cell 
body and the axon converging point, in which the regen-
eration length (or degeneration length) is normalized and 
better for comparison (Song et al. 2015).

Class IV da neuron (c4da), for example, the dorsal da C 
neuron (ddaC), is also an emerging model used for den-
drite repair study of its elaborate structured dendrite tree. 
Another attractive characteristic of the c4da neuron is its 

spontaneous pruning and regrowth during metamor-
phosis. Although this development-induced regrowth 
and the injury-induced regeneration of dendrites have 
shared molecular effectors and pathways, their initiation, 
detailed mechanisms and outcomes are mainly distinc-
tive. To be precise and specific, this article will not cover 
the regrowth process of neurites during development. 
Here, we summarize the characteristics and functions of 
different types of neurons during neural regeneration in 
C. elegans and Drosophila (Table 1).

Technologies
Femtosecond laser surgery is a typical method to cause 
injury in a single targeted axon or dendrite branch and 
has developed for decades since the early 2000s (Yanik 
et al. 2004). The high-energy pulse can vaporize the tar-
geted process of a neuron in C. elegans, and with the aid 
of two-photon technology, the surgery can be carried out 
in larger animals like Drosophila and zebrafish (Galbraith 
and Terasaki 2003; Sugimura et al. 2003). In Drosophila, 
the Dumostar number 5 forceps can be used to pinch 
neurons through the cuticle (Xiong et  al. 2010). Regen-
eration and repair mechanisms can be activated after 
the laser injury in the model neurons mentioned before, 
thus providing an ideal platform for studying injury-
induced neurite regeneration pathways. Recently, a novel 
method with higher operability to cause dendrite injury 
was developed (Zhao et al. 2021). With a single microin-
jection needle, the dendrite of C. elegans PVD neurons 
can be truncated under the dissecting stereomicroscope 
rapidly. Here, we summarize techniques used to damage 

Table 1  Types of neurons used for studying regeneration and repair in C. elegans and Drosophila 

Subtype Function Research focus Reference

C.elegans
VD and DD neuron

Motor neuron; regulation of the sinusoidal 
body movement

Axon regeneration Schuske et al. 2004

C. elegans
DA9

Motor neuron; receive signals from 
neurons such as AVA and transmit to VD 
neurons

Axon regeneration Ding and Hammarlund 2018

C. elegans
ALM and PLM neuron

Sensory neuron; response to gentle touch 
to the different part of body

Axon regeneration Chen et al. 2011

C. elegans
ASJ neuron

Sensory neuron; control nematodes in 
and out of the dauer stage, sensing light 
and electricity

Axon regeneration Chung et al. 2016

C. elegans
PVD neuron

Sensory neuron; response to fast and 
high-displacement mechanical and aver-
sive thermal stimuli

Dendrite regeneration; axon regeneration Brar et al. 2022; Oren-Suissa et al. 2017; 
Zhao et al. 2021

Drosophila
Motor neurons

Motor neurons; dominant muscle group Axon regeneration Xiong et al. 2010

Drosophila
Class IV DA neurons

Sensory neuron; encode sensory input Axon regeneration; dendrite regeneration Song et al. 2019; Thompson-Peer 
et al. 2016

Drosophila
Class I, III DA neurons

Sensory neuron; encode sensory input Axon regeneration Song et al. 2019
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neurons to study neurite regeneration in C. elegans and 
Drosophila (Table 2).

Notably, both worms and flies are powerful genetic 
models with intensively investigated genomes. Genome-
wide RNA interference (RNAi) libraries for C. elegans 
and Drosophila were set up early this century (Dietzl 
et  al. 2007; Kamath 2003), enabling the high-resolution 
reverse genetic screening in identifying the key players 
in neurite regeneration. Recent advances in the CRISPR/
Cas9 systems also enable high-efficient and customized 
techniques for time- and region-specific activation or 
inactivation of interested genes (Dickinson et  al. 2013; 
Shen et  al. 2014). Hence, together with diverse genetic 
screen methods and efficient neurite injury technologies, 
the precise roles of multiple genes and proteins during 
neurite regeneration processes can be identified. Below 
we will discuss several essential neurite regeneration 
pathways identified using these models.

Neurite regeneration regulated by the subcellular 
structures
Cytoskeletal components
The cytoskeletal components are fundamental compo-
nents of all eukaryotic cells, composed of three elements: 
microtubule, microfilament, and intermediate filament. 
Take the microtubule for example; under physiologi-
cal conditions, the microtubule consistently undergoes 
polymerization dynamics: a prolonged phase transition 
between polymerization and depolymerization (Desai 
and Mitchison 1997). Specifically, the two processes 
are highly regulated by many regulators, which can be 
divided into two groups: catastrophe factors that pro-
mote depolymerization and rescue factors that help to 
stabilize microtubules (Chen et al. 2018). Because of this 
character, the cytoskeletal components can provide a sta-
ble structure and dynamic movements and transport sys-
tems of a cell in response to different cellular needs, thus 

becoming an indispensable participant in multiple cellu-
lar processes, including neurite regeneration.

Immediately after injury, the cytoskeletal components 
are among the first lines of subcellular structures to be 
influenced. In C. elegans touch receptor neurons, most 
of the growing events of the microtubule proximal to 
the injury site halted within seconds (Chen et al. 2015). 
Another injury signal intensifies this destabilization; the 
elevation of intracellular calcium that forms a signal wave 
quickly spreads from the injury site to the distal part of 
the neuron (Ghosh-Roy et al. 2010). Calcium destabilizes 
microtubules by weakening the tubulin-tubulin inter-
action and can even result in the transition from stable 
axon shaft to growth cone (Weisenberg and Deery 1981; 
Ziv and Spira 1997). Consequently, the calcium wave 
and the disrupted dynamic balance of the microtubule 
both act as a signal to trigger several downstream injury 
response factors.

As a MAP kinase kinase kinase, DLK-1 acts upstream 
of the p38 and JNK families of the mitogen-activated 
protein kinase (MAPK) pathway (Hirai et  al. 1996, Nix 
et  al. 2011). Also, as a highly conserved pathway, stud-
ies in multiple model organisms, from worms to Dros-
ophila and even mammals, have revealed its role as a 
central regulator in the axon regeneration process (Sum-
mers et al. 2020; Yan et al. 2009). Microtubule dynamics 
regulation is one of its downstream effects. In Drosoph-
ila, regulation of microtubule dynamics and polarity 
by the JNK pathway can initiate neurite regeneration 
and even regenerate an axon from dendrite (Stone et al. 
2010). In C. elegans, loss of DLK-1 leads to inhibition of 
axonal regrowth after injury, while its overexpression 
can promote regeneration by inhibiting a microtubule 
catastrophe factor, kinesin-13 (Ghosh-Roy et  al. 2012). 
Recent advances using C. elegans also identified UNC-
16 (the homologue of the vertebrate JIP-3), which acts 
as an inhibitor of the DLK-1 pathway after axon injury 

Table 2  Comparison of technologies and their applications in studies of neurite regeneration and repair

Technologies Application Applicable model 
animal

Advantages Disadvantages References

Femtosecond laser 
surgery

Vaporizing targeted 
single axon or dendrite 
branch

C. elegans; Drosophila Quick, and precise Relatively expensive Galbraith and Terasaki 
2003; Sugimura 
et al. 2003; Yanik 
et al. 2004

Microinjection needle 
surgery

Mechanical trunca-
tion of single dendrite 
branch

C. elegans Low cost and conveni-
ent

Requires intense 
training

Zhao et al. 2021

Forceps pinched 
surgery

Mechanical crushing of 
neuronal axons

Drosophila Quick, low cost Technically challenging Xiong et al. 2010

Mechanical stress 
induced spontaneous 
axonal break

unc-70/β-spectrin 
mutants are capable 
of regenerating and 
repairing axonal breaks

C. elegans Convenient Only applies to specific 
neurons

Nix et al. 2014
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by altering the availability of the functional DLK-1 pro-
tein rather than downregulating its kinase activity at the 
injured site (Kulkarni et al. 2021). As a result, the dynam-
ics of the microtubule and the building block of micro-
filament, actin, are suppressed, and axonal regrowth is 
inhibited. However, in the nematode amphibious neuron 
ASJ, severing dendrites enhanced DLK-1-independent 
axonal regeneration. This axonal regeneration is depend-
ent on the transduction of calcium signaling through the 
ion channel (Chung et  al. 2016). In addition, PVD den-
dritic regeneration in C. elegans is not dependent on the 
DLK pathway, but the TIAM-1/CED-10 cascade cells 
autonomously initiate dendritic regeneration followed by 
branching (Brar et al. 2022).

In contrast to DLK-1, EFA-6 (the guanine-nucleotide 
exchange factor for ARF-6) is viewed as a catastrophe 
factor for cytoskeleton dynamics after injury (Chen et al. 
2015). Its inhibitory effects on axon regeneration are first 
identified in C. elegans mechanosensory neurons by a 
systemic genetic screen (Chen et  al. 2011). Particularly, 
EFA-6 quickly re-localizes from the cell membrane to the 
minus ends of the microtubule and downregulates axonal 
microtubule dynamic via its interaction with microtu-
bule-associated protein, TAC-1 and ZYG-8 (Chen et  al. 
2015). EFA-6 activates ARF-6 upon neurite injury, result-
ing in integrin’s retrograde transportation and inhibited 
regeneration (Chen et al. 2015). In Drosophila, Efa6 also 
acts as a regulator of axon growth by suppressing the 
microtubule polymerization during development (Qu 
et  al. 2019). The inhibition effects of EFA-6 do not last 
long after injury in some cases; instead, the protein may 
re-localize back to the plasma membrane, and the micro-
tubule dynamics will upregulate consequently (Chen 
et al. 2015).

Besides the two major pathways regulating cytoskel-
eton dynamics after neurite injury, other molecules also 
participate in the process. For instance, the MLK-1 cas-
cade can upregulate the growth cone formation in C. ele-
gans GABA motor neuron after axotomy in cooperation 
with the DLK-1 pathway (Nix et  al. 2011). BRC-2 and 
ALP-1 in C. elegans positively regulate the RHO-1/Rho 
GTPase- LET-502/ROCK pathway then promote MLC-4 
phosphorylation, thereby promoting axonal regeneration 
(Shimizu et al. 2018). In aged C. elegans, the insulin sign-
aling pathway DAF-2/INSR/IGF1R inhibits the formation 
of regenerative growth cone by sequestering the fork-
head transcription factor DAF-16/FOXO (Byrne et  al. 
2014). Independent of the insulin cascade, another highly 
conserved pathway, the PTEN/mTOR pathway, also 
influences cytoskeleton dynamics during axon regen-
eration. Inactivation of PTEN can disinhibit the mTOR 
pathway and trigger some of its downstream regulators 
such as PI3K and GSK-3 to enhance axonal transport 

and cytoskeleton assembly (Park et  al. 2010). In mice, 
mTOR is important for insulin-mediated RGC dendrite 
regeneration. mTOR complex 1 (mTORC1) is required to 
restore dendritic complexity, while mTORC2 is required 
to restore dendritic coverage (Agostinone et al. 2018).

Mitochondria and endoplasmic reticulum
Mitochondria are vital organelles responsible for energy 
metabolism, signal transduction, and calcium homeosta-
sis. In normal axons, mitochondria are transported to the 
plus and minus ends along microtubule filaments by the 
motor proteins kinesin and dynein, respectively (Lin and 
Sheng 2015).

After the axons of GABA motor neurons of C. elegans 
are injured, mitochondria will translocate into the axons, 
increasing the mitochondrial density in the axons. Mito-
chondrial translocation is regulated by double-leucine 
zipper kinase 1 (DLK-1). Mitochondria in axons are 
required for growth cones. After knocking down the 
miro-1 gene responsible for mitochondrial transport, the 
overall length of axon regeneration was shortened (Han 
et al. 2016). In the absence of increased mitochondria in 
the injured axon, the axon is less able to regenerate (Han 
et  al. 2016). In mice, the axon-specific mitochondrial 
outer membrane protein syntaphilin (SNPH) inhibits 
motility by increasing the force between mitochondria 
and microtubules and inhibiting ATPase activity (Chen 
and Sheng 2013). In SNPH knockout mice, mitochondrial 
trafficking is enhanced, ultimately reversing the energy 
deficit in axon regeneration (Cheng and Sheng 2021; 
Zhou et  al. 2016). When Drp1 conditional knock-out 
mice suffered axonal injury, mitochondrial morphology 
was altered with more long mitochondria, at which time 
acute and transient mitochondrial fission activation was 
important for maintaining neuronal and mitochondrial 
integrity (Kiryu-Seo et  al. 2016). Therefore, recruitment 
of mitochondria onto the injury sites of axons may be one 
of the conserved ways to promote axon regeneration.

As a membrane organelle, the endoplasmic reticulum 
(ER) plays an important role in lipid synthesis, membrane 
protein synthesis and distribution, and calcium homeo-
stasis. The structural morphology of the ER is highly 
dynamic and can well meet changing cellular demands 
during neuronal regeneration (Petrova et al. 2021).

In Drosophila ddaE neurons, the smooth ER is dis-
tributed throughout neuronal axons. After ddaE axonal 
injury, hereditary spastic paraplegia (HSP) protein and 
smooth ER accumulate at the tips of regenerating axons, 
but this was not observed in dendrites. Consistently, 
ER accumulation at the tips of regenerating axons was 
not seen in spastin null/hypomorph and atlastin RNAi 
animals (Rao et  al. 2016). In mammals, Protrudin is an 
integral endoplasmic reticulum membrane protein that 
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promotes regeneration by acting as a scaffold connecting 
axonal organelles, motors, and membranes (Petrova et al. 
2020).

The linker molecules of mitochondria and ER also 
play a role in regeneration. Glucose regulated protein 75 
(Grp75) accumulates in injured axons as a protein linking 
ER to mitochondria in mice. Overexpression of Grp75 
can produce more mitochondrial calcium and ATP, and 
promote axon regeneration (Lee et al. 2019).

Autophagosomes
Autophagy is a process that degrades unwanted or dys-
functional organelles and proteins in an autophagosome-
lysosome-dependent manner, thus being crucial for 
cellular homeostasis (Levine and Klionsky 2004). Upon 
neurite injury, timely removal of debris near the injury 
site is critical for the following regeneration events. 
Hence, the regulation of autophagy is another vital aspect 
of neurite regeneration.

In a recent study using C. elegans as a model organism, 
both autophagosomes and autolysosomes are reported to 
elevate after axotomy in an age-dependent manner (Ko 
et al. 2020). The injury-induced autophagy is dependent 
on the DLK-1 signaling pathway and can limit the func-
tion of NOTCH protein, an inhibitor for axon repair 
(Ko et  al. 2020). In mice, local administration of an 
autophagy-induced peptide to the axonal injury site sig-
nificantly suppresses axonal retraction and improves the 
neuron recovery by stabilizing the microtubule structure 
(He et  al. 2016). The inhibition of intracellular mTOR 
signaling pathway via rapamycin administration forms 
the molecular underpinnings of the blockade of Schwann 
cell-mediated autophagy, which accelerates the axon 
regeneration of peripheral nerves in mammalians (Inada 
et al. 2021; Li et al. 2020).

Nucleus and ribosomes
microRNA (miRNA) are small non-coding RNAs that 
play a vital role in the post-translational regulation of 
gene regulation, thus potentially influencing the neurite 
regeneration upstream of the previously mentioned key 
factors (Bushati and Cohen 2007).

In C. elegans AVM neuronal axons, a robust axon 
regeneration phenotype is shown when miRNA is 
depleted. In older neurons, let-7 miRNA acts on the 3’ 
untranslated region of lin-41, an essential AVM axon 
regeneration promoting factor, to inhibit lin-41 expres-
sion and suppress axon regeneration. In younger neu-
rons, lin-41 inhibits the expression of let-7 through the 
Argonaute ALG-1, showing a phenotype of axon regen-
eration (Zou et al. 2013). Loss of let-7 can also enhance 
axon regeneration by increasing the expression of ced-7, 
and, consequently, disinhibit the EFF-1–mediated axonal 

self-fusion (Basu et  al. 2017). In the dendrites of Dros-
ophila C4da neurons, however, the miRNA does just the 
opposite. The important regeneration regulator miRNA 
miR-87 promotes regeneration by inhibiting the tran-
scriptional repressor Tramtrack69 (Ttk69). When miR-
87 is absent, pruned dendrite regeneration is impaired. 
However, overexpression of miR-87 resulted in prema-
ture initiation of dendritic regeneration (Kitatani et  al. 
2020).

Plasma membranes and extracellular components
Fusogen‑mediated plasma membrane fusion
When neurons are damaged, the damaged axons or den-
drites need to reconnect with the original tissue. The 
fusion of neurons becomes the mechanism of possible 
spontaneous regeneration that reconnects the target. 
In C. elegans, when PLM neuron axons are severed, the 
fusogen protein EFF-1 is originally distributed through-
out the PLM neurons to appear on the membrane at 
the tips of the proximal and distal segments of the cut 
site. When phosphatidylserine (PS) is exposed to dam-
aged neurons as a ’save-me’ signal, conserved apoptotic 
cell clearance molecules such as transthyretin TTR-52 
respond. Then downstream EFF-1 restores membrane 
and cytoplasmic continuity, enabling axon regrowth and 
reconnection (Neumann et al. 2015). Specifically, another 
transthyretin-like protein, TTR-11, act as a mediator of 
injured axon recognition by cross-linking with the PS and 
integrin and initiating the axonal regeneration process 
(Hisamoto et  al. 2018). EFF-1-related transmembrane 
protein AFF-1 mediates dendrite regeneration when PVD 
neuron dendrites are severed. The fusogen protein AFF-1 
functions in cell–cell fusion in the skin and reproduc-
tive systems. Extracellular vesicles containing AFF-1 are 
released from the seam cells, promoting dendrite fusion 
when PVD dendrites are damaged (Oren-Suissa et  al. 
2017). When AFF-1 is overexpressed in PVD, the pro-
portion of dendritic fusion regeneration in aged animals 
is significantly higher than that in wild type. Therefore, 
AFF-1 can regulate regeneration after dendritic injury 
(Kravtsov et al. 2017).

The extracellular matrix
The extracellular matrix (ECM) plays an essential role 
in the stability of the neuronal structure, synaptogen-
esis and neurite regeneration. Neurons and glial cells 
synthesize chondroitin sulfate proteoglycans (CSPGs), 
tenascin-R and hyaluronic acid to form the ECM. 
CSPGs-degrading matrix metalloproteinases (MMPs) 
may promote axon regeneration in the context of axonal 
injury (Cua et  al. 2013). In Drosophila C4da dendrites, 
regeneration is increased when matrix metalloprotein-
ase 2 (Mmp2) is inactivated to inhibit ECM degradation 
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(DeVault et  al. 2018). Many axons in C. elegans grow 
between the epidermis and the body wall muscles, relying 
on the basement membrane for their proper attachment. 
The peroxidase PXN-2 plays a vital role in basement 
membrane consolidation. Loss of pxn-2 can promote 
the regeneration of damaged PLM and ALM neurons 
(Gotenstein et al. 2010).

Secretory vesicles
Secretory vesicles are generated from the Golgi net-
work, undergo maturation, and translocate to their target 
plasma membrane. The trafficking of secretory vesicles is 
thought to be regulated by Rab small GTPases, such as 
Rab3 and its relatives involved in regulating exocytosis 
(Gabriele Fischer von Mollard et al. 1994).

In C. elegans, knockdown of the Rab GTPase rab-
27 resulted in an enhanced regenerative phenotype of 
GABA neurons (Sekine et  al. 2018).  In a recent study, 

RAB-27-dependent neuropeptide NLP-40 was found to 
be secreted from the intestine to inhibit regeneration of 
injured GABA neurons (Lin-Moore et al. 2021).

Other external factors
Axon regeneration is also regulated by external fac-
tors. SVH-1 is secreted from ADL sensory neurons and 
activates the receptor-type tyrosine kinase SVH-2 in 
injured D-type motor neurons, thereby regulating the 
MLK-1–MEK-1–KGB-1 JNK pathway to promote regen-
eration of D-type motor neuron (Hisamoto et  al. 2016, 
Li et  al. 2012). As a transmembrane collagen-binding 
RTK, DDR-2 can co-regulate axonal regeneration with 
EMB-9 collagen type IV. When DDR-2 was knocked out, 
the frequency of axon regeneration in worms decreased. 
Scaffolding protein SHC-1 can simultaneously inter-
act with DDR-2 and SVH-2 to regulate axon regenera-
tion (Hisamoto et  al. 2016). Recent advances found the 

Table 3  Regulators during neural regeneration in C. elegans and Drosophila and their mammalian homologues

Invertebrate Vertebrate Regulator References

DLK-1 MAP3K12 Activator Ghosh-Roy et al. 2012; Hirai et al. 1996; Nix et al. 
2011

JNK-1 MAPK10, MAPK8 Activator Stone et al. 2010

UNC-16 MAPK8IP3, SPAG9 Inhibitor Kulkarni et al. 2021

EFA-6 PSD3 Inhibitor Chen et al. 2015

TAC-1 TAC1 Activator Chen et al. 2015

ZYG-8 DCLK1 Activator Chen et al. 2015

MLK-1 MAP3K9 Activator Nix et al. 2011

BRC-2 BRCA2 Activator Shimizu et al. 2018

ALP-1 LDB3; PDLIM5; PDLIM7 Activator Shimizu et al. 2018

DAF-2 IGF1R Inhibitor Byrne et al. 2014

DAF-16 FOXO Activator Byrne et al. 2014

DAF-18 PTEN Inhibitor Byrne et al. 2014

LET-363 TOR Activator Byrne et al. 2014

MIRO-1 MIRO Activator Han et al. 2016

let-7 / Inhibitor Zou et al. 2013

LIN-41 TRIM71 Activator Zou et al. 2013

ALG-1 AGO2 Inhibitor Zou et al. 2013

miR-87 / Activator Kitatani et al. 2020

Ttk69 / Inhibitor Kitatani et al. 2020

CED-7 ABCA3 Activator Basu et al. 2017; Neumann et al. 2015

TTR-52 / Activator Neumann et al. 2015

TTR-11 / Activator Hisamoto et al. 2018

EFF-1 / Activator Basu et al. 2017; Neumann et al. 2015

AFF-1 / Activator Oren-Suissa et al. 2017

Mmp2 MMP14; MMP15; MMP16 Inhibitor DeVault et al. 2018

PXN-2 PXDN Inhibitor Gotenstein et al. 2010

AEX-6 RAB27A Inhibitor Lin-Moore et al. 2021

SVH-1 TMPRSS15 Activator Li et al. 2012

SVH-2 TYRO3 Activator Hisamoto et al. 2016; Li et al. 2012

DDR-2 DDR1; DDR2 Activator Hisamoto et al. 2016

SHC-1 SHC1 Activator Hisamoto et al. 2016
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participation of other distal tissues in inhibiting the 
regeneration of axons. Under normal circumstances, the 
mature central nervous system of Drosophila is almost 
unable to regenerate after injury. Nevertheless, glial cells 
can be reprogrammed to increase glycolysis, thereby pro-
ducing more metabolites L-lactate and L-2-hydroxyglut-
arate, and promoting axon regeneration in C4da neurons 
(Li et al. 2020).

Conclusions and perspectives
Studies using C. elegans and Drosophila to investigate the 
mechanism of neurite regeneration have yielded excit-
ing advancements, including the identification of several 
organelles and conserved pathways (Table  3). However, 
we are still far from fully seeing the entire story.

Although the intensive investigation of some organelles 
and subcellular structures, such as the cytoskeleton and 
plasma membrane, our understanding of other partici-
pants in the neurite regeneration process is still relatively 
young. The metabolism regulation by mitochondria, 
autophagy process mediated by autophagic vesicles, 
and involvement of extracellular components are all 
promising research directions in this field. Moreover, 
the interaction between these organelles is still poorly 
understood. For instance, the mTOR pathway, which 
is believed to promote neurite regeneration by enhanc-
ing cytoskeleton dynamics, also negatively affects regen-
eration by inhibiting injury-induced autophagy. Hence, 
understanding the involvement of subcellular structures 
in an integrated manner may greatly expand our knowl-
edge of neurite regeneration.

Also, profit from the proven genetic screen and 
manipulation techniques developed for the two model 
organisms, some of the novel genetic clues may still 
hide in the dataset, waiting for further investigation. 
We also need to pay extra attention to the normal func-
tion of regenerated neurites, for some studies raised the 
concerns that partially impaired function and abnormal 
morphology of neurites despite complete regeneration 
after injury (Ding and Hammarlund 2018; Thompson-
Peer et al. 2016).

Like doing jigsaw puzzles, once we have collected 
almost all the scattered pieces, we can explore the inter-
actions between these involved organelles and pathways, 
gradually construct the general framework of the neur-
ite regeneration process and potentially identify the most 
influential factors of the whole story and how they can be 
organized and manipulated in an integrative manner to 
reach higher efficiency of neurite regeneration. Notice-
ably, the manipulation of regeneration-related genes 
should be done with great care, for many of them have 
other roles in physical conditions. For example, a gene 

that suppresses axon regeneration may also be crucial in 
suppressing ectopic neurite sprouting during develop-
ment. The compensation effects of gene editing can also 
give rise to unwanted side effects.

By extending the findings derived from C. elegans and 
Drosophila to other species, and finally, the mammals, 
we can reach a final goal of reversing the degeneration 
and injured neurons and curing these currently incurable 
diseases.
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