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Future of low back pain: unravelling IVD 
components and MSCs’ potential
Raquel Leão Monteiro1*    

Abstract 

Low back pain (LBP) mainly emerges from intervertebral disc (IVD) degeneration. However, the failing mechanism 
of IVD ́s components, like the annulus fibrosus (AF) and nucleus pulposus (NP), leading to IVD degeneration/hernia-
tion is still poorly understood. Moreover, the specific role of cellular populations and molecular pathways involved 
in the inflammatory process associated with IVD herniation remains to be highlighted. The limited knowledge 
of inflammation associated with the initial steps of herniation and the lack of suitable models to mimic human 
IVD ́s complexity are some of the reasons for that. It has become essential to enhance the knowledge of cellular 
and molecular key players for AF and NP cells during inflammatory-driven degeneration. Due to unique properties 
of immunomodulation and pluripotency, mesenchymal stem cells (MSCs) have attained diverse recognition in this 
field of bone and cartilage regeneration. MSCs therapy has been particularly valuable in facilitating repair of dam-
aged tissues and may benefit in mitigating inflammation’ degenerative events. Therefore, this review article conducts 
comprehensive research to further understand the intertwine between the mechanisms of action of IVD components 
and therapeutic potential of MSCs, exploring their characteristics, how to optimize their use and establish them safely 
in distinct settings for LPB treatment.

Keypoints 

• LBP Burden: Poorly understood factors contribute to significant low back pain impact on health and well-being.

• IVD and LBP: Disc degeneration links to low back pain, disrupting the intervertebral matrix and causing pain.

• Regenerative Focus: Improving IVD components crucial for targeted regenerative therapies addressing inflammation.

• Research Advances: IVD complexity, inflammatory markers, and MSC potential guide research despite replication 
challenges.

• MSC Therapies: MSCs offer the potential for anti-inflammation, regeneration, and reduced costs, with ongoing 
research needed.
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Graphical Abstract
This review article focuses on low back pain (LBP) caused by intervertebral disc (IVD) degeneration and the need 
to better understand the mechanisms involved. The specific roles of cellular populations and molecular pathways 
in the inflammatory process associated with IVD herniation are not well understood, and suitable models to mimic 
human IVD complexity are insufficient. However, due to their unique immunomodulatory and pluripotency abili-
ties, mesenchymal stem cells (MSCs) have gained recognition in cellular therapy for bone and cartilage regenera-
tion. MSCs have shown the potential in facilitating tissue repair and mitigating inflammation-related degenerative 
events. Therefore, this review article explores the intertwine between the mechanisms of action of IVD components 
and therapeutic potential of MSCs, exploring their characteristics, how to optimize their use and establish them safely 
in distinct settings for LPB treatment.

Background
According to the Global Burden of Disease Study 2019, 
LBP belongs among the 10 most important burden causes 
of higher DALYs (Disability-adjusted life years) in several 
age groups, making it fourth place in the 25–49 year age 
group with increasing age-standardized DALY rates for 
adolescents as well (Vos et al. 2020). Its disability effects 
frequently arise from teenage years into old age, which 
converts it into a high magnitude burden of social health 
coverage. Exhibits high epidemic proportions in Western 
societies with risk factors that are still poorly understood, 
like bending, repetitive work, lifting heavy weights, or 
twisting and it is also a main cause for most workers’ 
absenteeism (Serranheira et  al. 2020). Due to this high 
prevalence and work loss, LBP leads to enormous costs in 
informal care to enhance occupational physical demands. 
As an example, in the United Kingdom these costs could 
reach £10,668 million annually (Maniadakis et al. 2000), 
but this economic analysis may be broadened up to other 
countries as well (Alonso-García and Sarría-Santamera 
1976; David et al. 2017; Shmagel et al. 2016).

Outlining it all, LBP embodies leading roles in global 
disability. It can result from acute, chronic, or progressive 
injuries within the intervertebral disc (IVD) (Kreiner et al. 

2020). In most cases it is classified as an idiopathic pathol-
ogy, but can also be specifically diagnosed, being this lat-
ter case due to hernias, osteoporosis fractures, rheumatic 
diseases and others (Mattiuzzi et al. 2020). Despite distinct 
diagnoses, concurrent IVD injuries comprise progressive 
degenerative damage in a group of disorders known as 
degenerative disc diseases (DDD) (Kos et al. 2019).

As for current clinical solutions in disc repair and LBP 
control, most patients are prescribed with rest, exercise, 
physio, or pain medication as conservative therapies (Ng 
et al. 2021). When shown unsuccessful, invasive surgical 
procedures are needed, being the most frequent a dis-
cectomy, excision of affected IVD degenerated region, 
followed by an arthrodesis, also known as spinal fusion, 
where two adjacent vertebral bodies are fused together 
to aid in spinal stability and patient comfort (Gupta et al. 
2012). Since IVD tissue regeneration does not occur in 
any of these procedures, disc degeneration likely reap-
pears in the future and further contributes to the recur-
rence of LBP (Oshina et al. 2018).

With this, investigations surrounding the pathophysiol-
ogy of IVD degeneration have become pivotal and, upon 
that, developing innovative regenerative therapies that 
target the IVD and thus impact LBP management.
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IVD physiology
An IVD is a complex vertebral spine structure composed 
by 3 major components: a gel-like nucleus pulposus (NP) 
encapsulated by a lamellar fibrocartilaginous tissue, the 
annulus fibrosus (AF), and a hyaline cartilaginous sur-
face, the endplate (EP), that inextricably intertwines ver-
tebral bodies (Fig. 1; Daly et al. 2016; Raj. 2008).

All these distinct IVD components arise from the 
mesoderm but end up diverging into different embry-
onic progenitors during its development. The NP derives 
from the notochord while AF and vertebral bodies along 
with EP derive from the sclerotome compartment of 
the somites, respectively, leading to several biochemi-
cal and phenotypical differences in composition for the 
ultimately adult IVD (Chan et al. 2014; Harfe 2022). As a 
result, each of these tissues impacts IVD function differ-
ently, and their maintenance depends on balanced matrix 
and cell population turnover events (Pattappa et al. 2012).

Besides that, the IVD is an avascular tissue that 
depends on a marginal blood supply coming from EP 
capillaries for nutrients, oxygen, and removal of metabo-
lites, culminating in precarious nutritional pathways for 
IVD cells, mainly, through diffusion (Raj pp. 2008; What-
ley and Wen 2012; Zhu et al. 2012). Also, few nerves have 
been demonstrated to follow up these vessels and may 
derive from the ventral rami, gray rami communicants or 
branch from the sinuvertebral nerve (Viseux et al. 2021). 
Therefore, the understanding of these singular morpho-
logical attributes in the degenerating IVD becomes not 
only significant to IVD development but also to tissue 
remodelling and degenerative processes that may occur.

NP
Through the scope of an adult IVD, NP contains pre-
dominantly collagen type II fibers organized randomly 
and elastin fibers arranged radially (Raj pp. 2008; Shankar 
et al. 2009). Together, they hold an highly hydrated prote-
oglycan-containing gel, mostly aggrecan whose negative 
side chains allow water retention (Pattappa et  al. 2012; 
Roughley et  al. 2006), with hydrophilic chondroitin and 
keratin sulphate attached as well (Shankar et  al. 2009). 
Other proteoglycans include versican, decorin, byglycan 
and fibromodulin (Shankar et al. 2009; Chan et al. 2011), 
summing up to an overall content of about 18% proteo-
glycans,77% water and 5% collagen fibrils (Raj 2008; Pat-
tappa et  al. 2012; Whatley and Wen 2012). Due to this, 
the NP maintains disc height and a hydrostatic pressure 
that confers resistance to disc deformation (Tomaszewski 
et al. 2015). Besides that, its viscoelastic features allow it 
to sustain different magnitudes of loading and to with-
stand shock from activities requiring multi-axial move-
ments (Newell et al. 2017).

Concerning NP cells, these derive from the notochord, 
as previously described. During early childhood, they 
feature a large vacuolated size (30–40  µm) (Pattappa 
et al. 2012) but, up to adulthood, notochordal cells (NCs) 
start to be replaced by smaller spherical chondrocyte-
like cells ( ∼ 10 µm) (Colombier et al. 2014; Ruffilli et al. 
2003) reaching an estimated density of 4 × 106 cells/
mm3 in the developed IVD (Pattappa et al. 2012; Rough-
ley 2004). These mature NP cells start to express clas-
sic chondrogenic markers like SOX9, type II collagen 
(COL2A1) or aggrecan (Wu et  al. 2018) but present a 

Fig. 1  Line drawing of a spinal segment with an IVD between two vertebral bodies (left) and a cutout portion representing a normal IVD (right). 
Observe the vertebral EP sandwiched between discs, the centered NP and the AF surrounding it. The colors altered on the right IVD were 
only for differentiation purposes, inspired and approved by (Raj 2008)
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higher proteoglycan to collagen ratio (27:1) than hyaline 
cartilage chondrocytes (2:1) (Mwale et al. 2004).

To avoid controversy among the different laboratories, 
a group of top researchers in the field proposed a panel 
of markers to define a healthy NP cell phenotype, includ-
ing: HIF-1α (hypoxia inducible factors), GLUT-1 (glucose 
transporter), aggrecan/collagen II ratio > 20, Shh (sonic 
hedgehog), Brachyury, KRT18/19 and carbonic anhy-
drase XII (Risbud et al. 2015; Thorpe et al. 2016). Then, 
also some cell surface markers like Tie2+ (angiopoietin-1 
receptor), GD2+ (disialoganglioside 2) (Sakai et al. 2012) 
and CD24 (Thorpe et  al. 2016; Guan et  al. 2014) were 
reported to be found within reminiscent NP progeni-
tor cells, but decreased considerably with age and IVD 
degeneration as they lost differentiative and proliferative 
capacity. Although hard to isolate and identify, Tie2+ pro-
genitor cells have already been found in human, bovine, 
canine, and mouse specimens. Due to this remarkable 
multilineage differentiation and direct link with IVD 
degeneration these cells also become an intriguing target 
for regenerative techniques (Sakai et al. 2018). Addition-
ally, markers associated with mesenchymal stem cells 
(MSCs) like CD44, CD49f, CD56, CD73, CD90, CD105 
and CD166, have also been identified throughout NP 
cells on distinct differentiation stages (Risbud et al. 2015; 
Sakai et al. 2018; Choi et al. 2015). Besides, endogenously, 
NP phagocytic cells and macrophage-like cells, have also 
been reported on human surgical non-herniated NP 
samples that had a high number of resident CD68 + cells 
(Minogue et  al. 2010) and human cadaveric IVDs with 
distinct degenerative stadiums displaying high expression 
of CCR7 and CD163 (Feng et al. 2023).

Overall, the phenotypical expression profile varies a 
lot through development, aging and degeneration, which 
diverges a specific cellular characterization of NP cells 
amidst those stages.

AF
Regarding the AF, it consists of an IVD tough circular 
exterior surrounding the soft inner core, the NP, pro-
viding both mechanical force and resilience so the IVD 
can recover from countless movements. It is organized 
in concentric lamellar fibers rich in collagen type I or 
II and elastin, with an angle-ply orientation that deter-
mines its ability to absorb shock from bending and 
torsional rotation motion (Daly et  al. 2016; Raj 2008). 
Moreover, the elastin fibers intertwined with the col-
lagen fibers create an intermediate zone in the AF, 
termed translamellar bridging network (TLBN) that 
enables AF to contain NP bulging under high magni-
tude loads (Raj 2008; Whatley and Wen 2012). Overall, 
AF extracellular matrix (ECM) content comprises water 
levels lower than NP (60–70%) and, within dry weight, 
10–20% proteoglycans, 50–70% collagen and 2% elastin 
(Pattappa et al. 2012; Whatley and Wen 2012).

As for AF cell populations, whose reported density 
range stands at approximately 3000–9000 cells/mm3 
in an adult IVD (Daly et  al. 2016) they can be subdi-
vided into two major regions as represented in Fig.  2: 
the inner AF, with chondrocyte-like cells, round cells 
that produce collagen type II, and outer AF, com-
prising fibroblast-like cells, elongated, fusiform cells 
responsible for synthesizing collagen type I (Daly et al. 
2016; Torre et  al. 2019). Plus, average cellular density 

Fig. 2  Scheme illustrating main cell phenotypes already identified in inner and outer healthy AF, surrounding the NP (represented in blue), 
with respective hematoxylin-eosin images below obtained during immunohistochemistry assays. The vertebral body scheme is to represent 
the complex changeover between these AF regions, whose cell populations are hard to distinguish since there are scarcely any definitive 
or exclusive markers. (A) Outer AF with fibroblast like-cells and rich in collagen type I. (B) Inner AF with chondrocyte-like cells, also called 
fibrochondrocytes, rich in collagen type II



Page 5 of 11Leão Monteiro ﻿Cell Regeneration            (2024) 13:1 	

increases towards outer AF and, while the outer AF 
contains an aligned lamellar organization, the inner AF 
shows a more disordered array of fibrils (Molladavoodi 
et  al. 2020). These cellular regions are responsible for 
both anabolic and catabolic reactions in ECM homeo-
stasis, guaranteeing AF functionality and remodelling 
abilities up to a point (Daly et  al. 2016; Molladavoodi 
et al. 2020).

Besides, the changeover between the two regions is 
very heterogenous, and both their behaviour in IVD 
regenerative healing is yet unknow. Other cell popula-
tions have also been described more recently in the AF, 
such as: innate progenitor cells identified by immunolo-
calization of CD24, CD44, CD29 or CD105 (Daly et  al. 
2016; Chan et al. 2014; Choi et al. 2015) with additional 
stem cell markers like platelet-derived growth factors 
or CD90 (Daly et al. 2016; Stein et al. 2021) and (MSC)-
like cells, also seen in NP verified through osteogenesis, 
chondrogenesis, and adipogenesis assays (Tang et  al. 
2012).

Under the exposal of a reshaping degenerative micro-
environment, the AF may be evaluated by upregulation 
of specific cytokines or pain-related molecules expressed 
by stem/mesenchymal progenitor cell receptors or mac-
rophages, such as CD44 and CD14, respectively (Tang 
et al. 2012). Up to an extent, such cells imply that the IVD 
may contain a quiescent progenitor-like niche that ena-
bles IVD repairment (Gruber et al. 2016). Consequently, 
studying these cell profiles and respective markers holds 
futuristic expertise in therapeutic applications to manage 
IVD inflammatory-driven degeneration.

Regarding CD44, it regulates several cellular mecha-
nisms, including cell adhesion and differentiation. Dur-
ing IVD formation, CD44 is particularly important by 
anchoring hyaluronan (HA) to the cells and regulating 
its metabolism (Lyu et al. 2019). Moreover, it contributes 
to the formation and expansion of ECM from the devel-
oping IVD (Whatley and Wen 2012). In most vertebrate 
cells, either hematopoietic, endothelial, or epithelial, 
CD44 is expressed on its surface, and it is responsible for 
mobilizing leukocytes to sites of inflammation and medi-
ating rolling interactions with activated endothelial cells 
(Thorne et al. 2004). Additionally, its neighbouring mark-
ers may consist of collagen, fibromodulin, and laminin, 
all together found in the AF structure as well. As for its 
expression, it has not only been recently described in 
the AF (Baaten et al. 2012) but also in NP cells (Wu et al. 
2018; Guo et  al. 2018), which turns it into an enticing 
cell marker to assess during IVD´s immunomodulatory 
processes. As for CD14, already exhibited in harvested 
IVD-derived mononuclear cells from patients with lum-
bar disc herniation (Stevens et  al. 2000), it stands as a 
macrophage marker responsible for expressing some  

of the inflammatory cytokines, calcitonin gene‐related 
peptide (CGRP) (Miyagi et  al. 2020) and nerve growth 
factor (NGF) (Miyagi et al. 2020; Nakawaki et al. 2019), 
through paracrine or autocrine systems, leading ulti-
mately to discogenic LBP. Therefore, both markers are 
alluring to discern inflammatory mechanisms involved in 
either degenerative or injured IVDs.

IVD degeneration
With growth and natural aging, all IVD elements endure 
some modifications, in terms of their ECM composi-
tion, cell density and population as well as nutritional 
mechanisms or functionality range. However, discerning 
the difference between normal ageing and pathological 
IVD changes is hard (Lee et al. 2020). For once, they have 
similar attributes and may be extended through equiva-
lent pathways, like abnormal mechanical loads or nutri-
tional failure showing low pH, low glucose, and oxygen 
levels (Daly et al. 2016; Tomaszewski et al. 2015; Lee et al. 
2020). Thence, defining these degenerative ambiances 
is pivotal to target novel regenerative therapies to the 
appropriate circumstance.

Either way, in degenerated discs the limits between 
the AF and NP become more blurred, NP loses its gel-
features becoming more fibrotic and ECM content 
becomes more disorganized and degraded enzymatically, 
affecting mechanical load range possible to sustain effec-
tively (Galbusera et al. 2014). The proteoglycan´s content 
decreases, diminishing the capacity of water retention, 
which affects most IVD tissue´s biomechanical proper-
ties. On the other hand, collagens remain present, but its 
types and ratios seem to interchange in all IVD elements 
although, particularly, affecting the TLBN crosslinking 
properties (Desmoulin et  al. 1976; Duance et  al. 1976). 
As shown, angiogenesis in the outer region associated 
to scar distension and nerve ramification also appear 
within degeneration (Roberts et  al. 2006), along with 
cluster formations, especially in NP (Saggese et al. 2019). 
Cell death increases which, as reported, can cover up to 
50% of adult disc cells by showing necrotic or apoptosis 
characteristics. Plus, cellular microstructure may change 
from differentiated NP chondrocyte phenotypes gaining 
a more fibrotic format (Tomaszewski et al. 2015; Saggese 
et al. 2019).

Continuous IVD degenerative damage may further lead 
to AF tearing circumferentially without complete disrup-
tion or it may rupture sufficiently to prolapse NP, leading 
to intense discogenic pain and to the emergence of a her-
nia (Johnson et al. 2001).

The stretched fibers of the weakened AF allow an extra-
murally extravasation of substances, like glycosamino-
glycans or proteoglycans, ensuing a decrease in osmotic 
pressure (Schmidt et  al. 2007) and resulting in a bulky 
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AF that compresses the nerves, subjects NP to higher 
mechanical load pressures, severe hypoxia, limited nutri-
tion, all aggravating LPB (Daly et al. 2016; Tomaszewski 
et al. 2015; Mwale. 2004).

Thus, degenerated discs undergo other transformations 
such as becoming stiffer than unaffected discs and chang-
ing their overall metabolism. For instance, a decrease 
of ECM proteins, such as collagen type II and aggrecan 
(Roberts et al. 2006; Yao et al. 2002), is exhibited due to 
high enzymatic activity and loss of IVD cell’s ability in 
reproducing native ECM (Teixeira et al. 2015).

IVD degeneration’s impact on MSCs and their 
therapeutic potential
Since IVD´s degenerative microenvironment results in 
gradual residents’ cells depletion, various studies have 
tried to reinstate NP/AF with replenishing cells. There-
fore, several attempts have been made by infusing via-
ble stem cells such as MSCs into the degenerating IVD, 
employing various cell sources, animal models, injec-
tion techniques, and bioengineered scaffolds (Nguyen 
et  al. 2017). Due to their known tri-potency to differ-
entiate into osteoblasts, chondrocytes, and adipocytes, 
MSCs are the ancestors of mesenchymal lineages and are 
responsible for growth, immunomodulatory properties, 
exerting stimulatory effects on other cell types and ongo-
ing turnover of tissues as inherent regenerative promot-
ers (Clouet et al. 2019). However, more specifically, their 
chondrogenic and immunomodulation abilities can be 
applied to IVD therapy (Nguyen et al. 2017; Clouet et al. 
2019).

MSCs can either be obtained from a variety of tissues 
and organs (Liu et al. 2022) to be grafted into IVD matrix 
(Lv et  al. 2014) or, as previously described (Daly et  al. 
2016; Chan et al. 2014; Choi et al. 2015; Tang et al. 2012), 
MSCs with minor differences in potency and surface 
marker expression can be found endogenously in both AF 
and NP as a progenitor-like niche that is dormant with 
potential to support IVD repairment after stimulation. 
Although these endogenous cells can significantly uphold 
tissue balance, gradually replenishing the tissue during 
normal physiological conditions, the pathologic milieu 
of the host tissue is related to variations in their capacity 

for differentiation, cytokine secretion, or gene expression 
profile (Liu et al. 2022; Chu et al. 2022). Regarding exog-
enous MSCs, their source of origin also affects their pro-
file. As an example, bone marrow-derived MSCs have a 
lot of increased genes linked to antimicrobial activity and 
osteogenesis, when compared to umbilical cord-derived 
MSCs, which have more transcripts linked to matrix 
remodelling and angiogenesis (Lyu 2022).

The chronic progressive character of DDD associated 
with hypoxia, low glucose levels, mechanical loading, 
acidic pH, hyperosmolarity, and inflammation not only 
greatly impacts cell survival, but also makes all types of 
MSCs susceptible to phenotype divergence (Xu et  al. 
2019). To address this problem, the Mesenchymal and 
Tissue Stem Cell Committee of the ISCT (International 
Society for Cell Therapy) have previously proposed a 
set of standards to define multipotent human MSC with 
regenerative potential for both scientific (Table  1) pur-
poses and pre-clinical studies (Vadalà et al. 2019):

Nonetheless, these promising findings do not fully 
validate the viability of employing MSCS to supplement 
or replenish IVD cells, plus enhancing the synthesis 
of a more effective ECM. Their stemness and differen-
tiation stability also depends on the timing of treatment 
from the onset of discomfort, the stage of degeneration 
to treat, and the dosage of implanted cells (Dominici 
et al. 2006). Therefore, a regenerative strategy is ideal in 
the early stages of DDD, before structural degenerative 
changes appear, and the local stem cell reserve is com-
pletely depleted.

Alternatively, it is also important to understand that 
not all microenvironment shifts in a degenerating IVD 
are harmful for the survival and action´ mechanisms of 
stem cells. For once, MSCs are known to not be as sen-
sible to apoptotic induction effects as resident IVD cells. 
Moreover, it has been proved that the lack of oxygen 
encourages them to maintain their unique properties, 
while promoting the conversion of MSCs into NP-like 
cells, being the latter already used to natural hypoxia lev-
els. With this, hypoxia may be evaluated as a favourable 
factor (Chu et  al. 2022; Zhou et  al. 2021). Besides that, 
the healthy IVD typically exhibits high osmolarity due to 
proteoglycans and collagen concentrations, which tends 

Table 1  Standards to identify multipotent human MSCs (Vadalà et al. 2019)

1. Adherence to plastic in standard culture conditions

2. Phenotype Positive (≥ 95% +)
CD105
CD73
CD90

Negative (≤ 2% +)
CD45
CD34
CD14 or CD11b
CD19 or CD79α
HLA-DR

3. In vitro multipotent differentiation: osteoblasts, adipocytes, chondroblasts (shown by staining of in vitro culture)
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to decrease during the degenerative process. This change 
could uplift both MSCs and progenitor cells as well, since 
high osmolarity tends to be hostile for ECM production 
and cell growth.

2D aspects to enhance MSCs’ interventions
As seen, the complex cascade of events in IVD degenera-
tion makes it hard to assess effective cellular recruitment 
strategies, either endogenous or transplanted MSCs. Yet, 
their potential can be enhanced using the appropriate 
strategies to each cellular pool.

Within their microenvironment, MSCs are known 
to regulate the immune system by specifically detect-
ing abnormal ambiance factors through their own toll-
like receptors and are known to be hypoimmunogenic 
(Clouet et al. 2019), which makes them relevant for allo-
geneic transplant. However, when pro-inflammatory 
factors become overbearing due to progressive degen-
eration, MSCs develop an anti-inflammatory phenotype 
to prevent chronic inflammation and promote tissue 
repair (Zhou et  al. 2021; Gupta et  al. 2022). Therefore, 
their high sensitivity to the inflammatory milieu requires 
approaches prior to cells´ administration, also known as 
cell priming (Noronha et al. 2019).

Among the distinct procedures of cell priming 
(Noronha et  al. 2019), cells may be enriched with pro-
inflammatory mediators, undergo morphological, immu-
nophenotypic, or genetic/epigenetic changes. Upon that, 
and mostly due to the avascular nature of IVD, systemi-
cally appliance is less appropriate and other means such 
as intradiscal injections of cells, transplant adjacent to 
hydrogels, exosomes, viral vectors, or combinations of 
these are needed for both exogenous and endogenous 
interventions. Plus, it also becomes important to con-
sider tissue tension, range motion, and injection needle 
size used, since the degree of IVD disruption may fluctu-
ate the risk of leakage and, therefore, its clinical success 
(Noronha et al. 2019; Binch et al. 2021).

Pre-conditioning MSCs under hypoxic culture condi-
tions has also proven to be a crucial factor for increased 
proliferation, superior plasticity, and extended survival 
upon IVD transplantation since its hypoxic structures 
are physiologically prepared for these circumstances 
(Samanta et al. 2023). Other culture nutrients, like serum 
or glucose, and frequent medium changes are also consid-
ered for growth, but may not accurately reflect a natural 
IVD environment, arising uncertainty when evaluating 
in-vitro experiments data (Samanta et al. 2023; Schubert 
et  al. 2018). To further validate results, more advanced 
organ culture models and in-vivo models are required, 
along with 3D biomimetic strategies to enable better cel-
lular interactions and provide structural cell support.

3D aspects to enhance MSCs’ interventions
The inherent complexity of the human IVD makes it hard 
to find an appropriate animal model that can fully mimic 
disc degeneration/inflammation. Therefore, assessing 
a suitable model implies some requisites. Some com-
mon models include rat, rabbits, canine and goat models 
but, although of quadrupedal nature, a bovine model is 
currently more fitting than the others for its analogous 
qualities to humans. It has equivalent weight, absence 
of NCsand similar biomechanical features (Harfe 2022). 
In in vitro cultures the intrinsic variability makes it hard 
to assemble each mediator´s role in a singular mecha-
nism. Additionally, their manipulation may increase the 
changes of modifying receptors expression and introduce 
impurities (Samanta et  al. 2023). As for in  vivo models, 
their distinct NP/AF dimensions, and spine biomechan-
ics from human IVDs, aside with bioethical constraints, 
discard them from being a convenient model. Contrarily, 
ex-vivo organ culture models using disc implants have 
already been successfully established for studying degen-
eration-associated inflammation (Yao et  al. 2002) with 
distinct pro-inflammatory agents and verify the benefits 
of MSCs based-treatments (Saparov et al. 2016).

On the other hand, by integrating precision medicine 
techniques with biomaterial-based tissue engineering, 
more tailored approaches to patients of distinct stages 
of degeneration have also been establishing an extensive 
repertoire. These biomaterials can mimic and preserve 
the ECM of the IVD for cells after injection through 
minimally invasive procedures or surgical implantation, 
target the pathophysiology involved by adding therapeu-
tic small molecules/drugs or work as a cell delivery sys-
tem for stem cell transplantation. Mohd Isa et al. shows 
an up-to-date review on biomaterials already developed 
to target different severities of disease and bioengineer-
ing perspectives for the materials used (Chen et al. 2009). 
Besides, 3D-printing manufacturing techniques are being 
explored to customize adequate scaffolds, spheroids, 
or hydrogel characteristics to sustain specific anatomic 
features and improve patient´s disc balance. Current 3D 
experimental models show ability to maintain NP/AF 
phenotype, regulate cellular functions, reduce pain and 
inflammation in animal studies (Mohd Isa et al. 2022; Du 
et  al. 2019; Pirvu et  al. 2015). Even so, their efficacy in 
human trials is still divergent and narrow.

Conclusions and perspectives
Low back pain continues to exhibit high magnitude bur-
den of social health coverage and elevated morbidity pro-
portions with risk factors (genetics, loading pressure, age 
…) that are still poorly understood, but it is mostly asso-
ciated to IVD degeneration leading to DDD. In result, 
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the metabolic balance of the ECM is disrupted, encour-
aging catabolism and cellular pool depletion. Therefore, 
improving the molecular and cellular profile of IVD com-
ponents becomes alluring to discern inflammatory mech-
anisms involved in these events and essential to target 
novel cellular regenerative therapies to the appropriate 
circumstance.

Ongoing research with several models has been suc-
cessful in understanding the complexity of IVD struc-
tures and degenerative ambiances, although precisely 
replicating in-vivo models across several degenerative 
stages is hard to obtain due to tissue inherent divergence. 
Even so, as described, several markers have been found 
to have crucial biomechanical and guiding roles for the 
inflammatory events implied across all structures and 
there are potential stem cellular niches for tissue regen-
eration, such as MSCs.

The mechanisms by which MSCs exert their ther-
apeutic effects are believed to involve multiple 
mechanisms, including immunomodulation, anti-
inflammatory effects, and the secretion of various 
growth factors and cytokines. Therefore, cellular ther-
apies using either endogenous or exogeneous MSCs 
are intriguing to be able to adapt therapies aim and 
scope to each IVD degenerative ambiance, accordingly. 
Not only that, but cellular therapies can contribute to 
replace invasive surgeries like discectomies, be com-
bined with distinct pharmaceuticals or biomaterials 
and, if offering a single (or temporary) treatment, may 
drastically reduce healthcare and social costs. Regard-
less, while MSCs show promise in cellular therapies, 
more research is needed to fully understand their ther-
apeutic potential, optimize their use, and establish their 
safety and efficacy for future clinical trials and ongoing 
research actively exploring this area. Their number is 
expected to increase overtime since these cells are yet 
used only as a palliative treatment of DDD to reduce 
discomfort or surgical replacement and, up to date, 
there is still the need to find more diverse mechanis-
tic models for preclinical testing and establish guide-
lines regarding patient stratification for clinical trials. 
Besides, since IVDs continue to exist in a hostile envi-
ronment, most strategies are still in the experimental 
stage, and even if symptoms are relieved, degeneration 
may still be occurring.

With this, unravelling IVD structures and their 
immunomodulatory mechanisms associated with 
degeneration are a starting point for posterior regen-
erative therapies with stem cells pools such as MSCs, 
leading to inflammatory management in patients with 
DD, while reducing LBP.
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