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Abstract

Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Cur-
rently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the pri-
mary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal

and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underly-
ing mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limi-
tations associated with commonly employed models for the study of valve calcification. We specifically emphasize
the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve.
Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
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Background

Calcific aortic valve disease (CAVD) is a chronic condi-
tion characterized by the hardening and calcification
of the aortic valve leaflets (Voicu et al. 2023). Its preva-
lence increases with age, affecting over 25% of individu-
als aged 65 and older, and surpassing 50% in those over
85 (Kraler et al. 2022). At early stage CAVD, non-symp-
tomatic thickening and sclerosis of valve leaflets do not
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necessitate immediate intervention. However, severe
calcification, termed aortic stenosis, leads to a signifi-
cant reduction in blood flow, requiring surgical interven-
tion to replace the damaged valve with prosthetic valves,
including mechanical valves, as well as biological valves
derived from animal or human tissue (Lindman et al.
2013). Although surgical interventions are effective, they
are associated with complications and suboptimal long-
term outcomes, as there are currently no medical thera-
pies available. Recognizing the urgency to enhance our
understanding of CAVD pathogenesis and identify suit-
able therapies, various models have been proposed in
recent years to facilitate the exploration of the underly-
ing mechanisms of CAVD. This review aims to succinctly
outline the strengths and weaknesses of these models,
providing insights into their utility for CAVD research,
and discussing potential future directions.

Pathophysiology of CAVD

Calcific aortic valve disease is now recognized as an
active process rather than a passive one, which is char-
acterized by the accumulation of calcium deposits and
fibrosis in the aortic valve leaflets (Wang et al. 2021a,
b), leading to stiffening, narrowing, and eventually,
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obstruction of blood flow through the valve (Moncla
et al. 2023). The pathophysiology of CAVD is complex
and multifactorial, involving a combination of genetic
and environmental factors, as well as various cellular and
molecular mechanisms (Li et al. 2013). This understand-
ing has been supported by research findings that dem-
onstrate the active involvement of valvular interstitial
cells in the development of CAVD. These cells undergo
osteoblast-like differentiation, leading to extracellu-
lar matrix remodeling, collagen deposition, and ulti-
mately, the formation of bone-like structures within the
valve. Additionally, genetic variations in certain genes
have been associated with an increased risk of CAVD,
although they explain only a limited number of cases.
The interplay between genetic factors, environmental
factors such as hypertension and hyperlipidemia, and
cellular processes contributes to the complex pathogen-
esis of CAVD.

Risk factors of CAVD

Bicuspid aortic valve (BAV) is the most prevalent con-
genital heart defect, primarily linked to genetic fac-
tors and identified as a congenital risk factor for CAVD
(Moncla et al. 2023; Yoon et al. 2020). Genomic studies
have revealed associations between BAV and NOTCH]I
(Debiec et al. 2022), SMAD6 (Kloth et al. 2019),
ADAMTS19 (Ackah et al. 2023), gene members of GATA
(Gharibeh et al. 2018) and ROBO (Mommersteeg et al.
2015) families. Furthermore, NOTCHI (Majumdar et al.
2021), LPA (Boffa & Koschinsky 2019; Smith et al. 2014),
PALMD (Wang et al. 2022), IL6 and FADS1/2 are impli-
cated in the initiation and progression of CAVD. How-
ever, genetic variations within these genes explain only a
restricted number of cases and contribute to a moderate
to low population-attributable risk. Additional research
is necessary to identify novel gene candidates and expand
our understanding of the genetic factors influencing
CAVD.

The susceptibility of CAVD is higher in the elderly and
among men. Additionally, hypertension is associated
with valvular calcification regardless of age; individuals
with obesity, kidney dysfunction and mineral metabolism
are more likely to develop valve calcification. Abnormal
blood flow disrupts tissue balance by triggering inflam-
matory and fibrotic signals, thereby accelerating the pro-
gression of calcific aortic valve disease and ultimately
leading to the development of aortic stenosis (Kraler et al.
2022). Lipoprotein(a) fuels this process by promoting
aortic valve endothelial dysfunction, inflammation, and
oxidative stress in the valve (Boffa & Koschinsky 2019).
Notably, oxidized phospholipids, converted by autotaxin
into lysophosphatidic acid, trigger pro-inflammatory
and procalcific responses through lysophosphatidic acid
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receptors (Pantelidis et al. 2023). Moreover, chronic renal
disease and downstream vascular disorders are asso-
ciated with an elevated susceptibility to CAVD (Vavi-
lis et al. 2019). These risk factors can interact with each
other, further amplifying the risk of developing CAVD.

CAVD pathophysiology

The normal aortic valve comprises three leaflets anchored
to the fibrous ring at the left ventricle’s outlet. These leaf-
lets consist of fibrous, spongiosa, and ventricularis layers,
which are populated with valve interstitial cells (VICs),
with the entire structure wrapped by valve endothelial
cells (VECs) (Voicu et al. 2023). Lamina fibrosa facing the
aorta is rich in collagen fibers, lamina spongiosa layer is
composed of loose connective tissue rich in glycosami-
noglycans, and lamina ventricularis oriented towards the
ventricles is characterized by radially distributed elastic
fibers (Jana et al. 2019). Under physiological conditions,
the spongy layer of the aortic valve maintains the proper
arrangement of the collagen layer (fibrous layer) and elas-
tic layer (ventricular layer) (Tseng & Grande-Allen 2011).
The gaps in the spongy layer make it highly shockproof
and lubricate the two adjacent layers at the same time.
Due to the presence of elastin fibers, the ventricular layer
reduces radial strain, making the valve elastic (Kraler
et al. 2022). The valve is extremely elastic and compress-
ible, providing the biomechanical properties required to
sustain repetitive cyclic strain over time.

The underlying pathological processes of CAVD
involve dysfunction of VECs chronic inflammation,
lipid deposition, remodeling of the extracellular matrix,
and ectopic calcification primarily caused by VICs oste-
odifferentiation (Kraler et al. 2022; Moncla et al. 2023).
Healthy VECs maintain an endothelial barrier ensuring
optimal mating surfaces (Vesely & Noseworthy 1992).
Atherogenic factors or increased mechanical stress lead
to VECs injury, disrupting the endothelium, promoting
oxidatively modified lipid uptake, and activating inflam-
mation-calcification loops within VICs. VICs then dif-
ferentiate into myofibroblasts and osteoblasts, triggering
extracellular matrix remodeling, collagen deposition,
nucleation loci formation, and ultimately, VICs-mediated
bone formation (Decano et al. 2022). Understanding
VICs’ intricate differentiation between myofibroblast and
osteoblast pathways is crucial in modeling calcific aortic
valve disease.

Recent studies have shown that the pathological
changes of CAVD are similar to atherosclerosis in the
early stage, and may be similar to bone formation in
the late stage (Yip & Simmons 2011). However, clini-
cal patient detection and diagnosis, as well as current
basic research, mostly focus on changes in the late stages
of the disease, and it is still difficult to carry out the
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development of the early and progressive stages of the
disease. This is partly due to the lack of suitable animal
models of CAVD.

Animal models of CAVD

Animal models, aside from defined traits obtained from
clinical patients with CAVD, are the most commonly
used method for understanding its pathological pro-
cesses. Animal models like mice (Gollmann-Tepekoylu
et al. 2023), rabbits (Liu et al. 2020), and porcine have
been extensively discussed. Aortic valve calcification,
assessed through histological techniques such as alizarin
red, von Kossa or movat pentachrome staining, repre-
sents a prominent phenotype. Evaluation using imaging
modalities like echocardiography and micro-CT aids in
assessing valve characteristics, calcification, and hemo-
dynamic changes (Ahmad et al. 2023). Additionally,
molecular markers like Runx2 (Yu et al. 2018), osteo-
pontin (OPN) (Passmore et al. 2015; Rajamannan et al.
2003), BMP2 (Gomez-Stallons et al. 2016), inflamma-
tory cytokines IL-1p, IL6, and TNF-a (Combi et al. 2023)
serve as crucial indicators in CAVD models. Our analysis
delves into diverse methodologies utilized for modeling
CAVD, while assessing the strengths and limitations
inherent in each approach. The advantages and disadvan-
tages of CAVD animal models are listed in Table 1.

Diet-induced animal models

Diet-induced animal models are vital in understanding
CAVD pathogenesis. High-fat or cholesterol-rich diets
induce systemic inflammation and pathological changes
similar to human CAVD. Rodents and large animals pos-
sess distinct characteristics when subjected to high-fat/
high-cholesterol diets. Mouse aortic valve tissue lacks the
requisite trilayer structure for spontaneous calcification.
Despite this, mice are predominantly chosen due to their
small size, ease of maintenance, and genetic manipula-
bility in modeling CAVD (Ahmad et al. 2023). While a
high-cholesterol diet can cause lipid accumulation and
macrophage infiltration in mouse valves (Li et al. 2022;
The et al. 2022), their relevance is constrained by pro-
longed duration and limited clinical significance. There-
fore, the most commonly employed approach involves
combining a high-fat diet with genetic or other altera-
tions to establish a CAVD model in mice.

Large animal models like rabbits exhibit a trilayer valve
shape, making them suitable for simulating CAVD symp-
toms through dietary cholesterol. A high-cholesterol and
vitamin D supplemented diet in rabbits triggers aortic
valve stenosis, calcium deposition, and elevates DPP-4
activity (Choi et al. 2021; Sider et al. 2014). However, dif-
ferences in lipid metabolism between humans and rab-
bits, extended experimental duration, and the necessity
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of Vitamin D for advanced CAVD stages are limitations.
On the other hand, porcine models closely resemble
human heart anatomy and lipid metabolism (Schus-
ter et al. 2010). Under high-fat/cholesterol diets, pigs
develop advanced aortic stenosis (AS) stages involving
necrotic core, fibrous cap, hemorrhage, calcification, and
medial thinning (Wang et al. 2002). Nonetheless, the pig
model’s drawbacks include prolonged experimental time-
lines and high economic costs.

Genetically modified animal models

Genetically modified animal models serve as crucial
tools to replicate human disease traits, aiding the study
of underlying mechanisms and therapeutic avenues.
ApoE —/—and Ldlr—/—mice are frequently utilized for
CAVD modeling due to genetic modifications (Wang
et al. 2020; Weiss et al. 2006). Noteworthy genes like
Notchl, Postn, associated with congenital bicuspid aor-
tic valve, aid in studying valve development and the
CAVD process using genetically modified mice (Cheng
et al. 2021; Gomez-Stallons et al. 2016). Wirrig et al.
demonstrated in klotho-deficient mice that the activa-
tion of BMP signaling and the induction of osteochon-
drogenic genes precede and localize with aortic valve
calcification, highlighting the essential role of BMP sign-
aling in the development of CAVD in vivo (Wirrig et al.
2015). Beyond mice, Watanabe heritable hyperlipidemic
(WHHL) rabbits (Rajamannan et al. 2005) and pigs with
mutated LDLR and/or apolipoprotein genes (Grun-
wald et al. 1999; Prescott et al. 1991) are also employed
in CAVD research. These models offer valuable insights
into disease mechanisms and potential therapeutic tar-
gets. In genetic editing, mice hold an edge due to their
clear genetic background, facilitating simpler gene edit-
ing and benefiting from a more mature antibody system
in research. Conversely, large animals have complex
genomes, posing challenges for transgenic manipula-
tions. A few strains are derived from spontaneous for-
mation, for example, pigs with hypercholesterolemia and
aortic stenosis share several traits with human CAVD
(Sider et al. 2014; Skold et al. 1966). The natural Nox2
inhibitor, celastrol, was found to effectively alleviate
CAVD by inhibiting Nox2-mediated glycogen synthase
kinase 3 beta/B-catenin pathway in aortic valvular inter-
stitial cells (AVICs), and was also found to reduce ROS
production, fibrosis, and severity of aortic stenosis in a
rabbit CAVD model (Liu et al. 2020).

Mechanical injury models

Mechanical injury models involve applying stress or
damage to valve leaflets, initiating an inflammatory
response and pathological tissue remodeling leading to
CAVD. A commonly used model is employing balloon
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catheters or wire probes to induce damage, as observed
in rabbit models (Kim et al. 2023). Igbal et al. utilized a
mouse model deficient in sortilin and subjected it to
aortic valve (AV) wire injury (AVWI) to investigate the
impact of sortilin on AV stenosis, fibrosis, and calcifi-
cation (Igbal et al. 2023). Honda et al. (Toshima et al.
2020) induced aortic valve injury in male C57/BL6 mice
by inserting and maneuvering a spring guidewire under
echocardiographic guidance through the right common
carotid artery into the left ventricle. Serial echocardio-
graphic assessments revealed a significant increase in
aortic velocity one-week post-injury, persistently elevated
until 16 weeks’ post-injury. AVS mice showed a higher
heart weight/body weight ratio, decreased cardiac func-
tion, increased valve leaflets proliferation, inflammatory
cytokines and osteochondrogenic factors within 4 weeks
post injury. Alizarin red staining showed valvular calcifi-
cation 12 weeks after injury (Honda et al. 2014).

While each model describes different aspects of CAVD
development, no single animal model consistent com-
pletely represents human CAVD with its wide spectrum
of risk factors and heterogeneity. Therefore, it is recom-
mended to use orchestrated combination of multiple
animal models with in vitro studies to demystify CAVD
mechanisms further and develop effective therapeutic
interventions for patients with CAVD.

_.)\_, £
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In vitro models

With regard to in vitro models, mimicking aortic valve
structure and modeling the progression of CAVD
dynamics are key issues that need to be addressed. We
will discuss in vitro CAVD models from plane cell model,
3 dimensional (3D) cell culture model, as summarized in
Fig. 1.

2D cell culture models

There exist various in vitro cell models designed for
investigating CAVD, categorized into two primary
strategies: 1) Isolation of aortic valve cells from calcific
aortic valves across different species, encompassing sam-
ples from CAVD patients. 2) Induction of calcification
through osteogenic differentiation medium applied to
VICs. Regarding the latter approach, several factors are
usually taken into account, such as the heterogeneity of
aortic valve cells, the authenticity of both external and
internal stimuli, and the configuration that best mimics
valve morphology or function.

Cell resources
Primary cells 'The isolation of VECs and VICs is an essen-

tial step in studying CAVD in vitro. VECs are prone to con-
tamination with VICs, necessitating further enrichment

Calcific aortic valve tissue ] Osteogenic differentiation

-~

=)
| — A N —
Healthy aortic valve tissue Osteogenic differentiation
2D Sy Osteogenic VICs
— ° : I - -
N myofibroblastic differentiation .
Myofibro VICs
hPSC VIC/VEC

L3 &%

Micropattern Microfluidic Hydrogel Scaffold Bioreactor

device

Fig. 1 Different types of in vitro CAVD models. The most straightforward, but challenging, approach is to isolate calcified aortic valves from CAVD
patients or animals. Alternatively, healthy valves can be induced using osteogenic medium. VICs and VECs are more common cell types used

for in vitro CAVD modeling. These cells, isolated from healthy animals or differentiated from hiPSCs, are then treated with osteogenic or myofibrotic
medium to mimic the pathophysiological processes of CAVD. In addition, 3D culture systems including micropatterns, microfluidic devices,
bioreactors, hydrogels, and scaffolds can be employed to mimic the aortic valve structure, function, and complex environmental stresses associated

with CAVD
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through cell sorting methods (Gould & Butcher 2010).
VICs are crucial contributors to the pathogenesis of cal-
cific aortic valve disease by transforming into activated
myofibroblasts-like cells. These myofibroblast-like cells
play dual roles in the disease process: they synthesize and
remodel the extracellular matrix (Gee et al. 2021), while
also undergoing differentiation into osteoblast-like cells,
promoting calcium deposition (Hjortnaes et al. 2015).
VICs can be derived from either calcified or healthy,
non-calcified valves. VICs obtained from calcified valves,
sourced from patients undergoing valve replacement sur-
gery, offer a direct examination of pathological phenotypes
compared to VICs from normal valves (Duan et al. 2013;
Li et al. 2013). While human valves are preferred to elimi-
nate species differences, acquiring valve cells from healthy
individuals is challenging (Ferdous et al. 2011). Obtaining
primary aortic valve cells from mammals, such as sheep
(Immohr et al. 2022; Weber et al. 2021), porcine (Bram-
sen et al. 2022; Hjortnaes et al. 2016; Meerman et al. 2021),
bovine (Wang et al. 2021a, b) and mice (Lim et al. 2016),
are more straightforward compared to human aortic valve
cells. However, these cells only partially recapitulate the
human CAVD procedures. The most practical approach
for in vitro studies is to isolate viable VICs from valves of
healthy animals and then subject them to an activating and
osteogenic differentiation medium to induce calcification.

hPSC-derived valvular cell model Human-induced
pluripotent stem cells (hiPSCs) have revolutionized the
field of regenerative medicine by enabling the production
of robust functional cells that were previously difficult
to obtain, such as cardiomyocytes (Yoshida & Yamanaka
2017), neural cells (Chang et al. 2019), and hepatocytes
(Ramli et al. 2020). This remarkable ability extends to
the generation of VECs and VICs, offering a promising
source of cells for heart valve research and therapy.
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The current strategy for directed differentiation of hiP-
SCs into valve cells is a three-stage process (Cheng et al.
2021), as illustrated in Fig. 2. While different differen-
tiation protocols employ varying inducer molecules,
they all converge on the goal of recapitulating the early
stages of valve formation and specialization during
heart development (Armstrong & Bischoff 2004). Pluri-
potent stem cells (PSCs) are differentiated into meso-
dermal cardiac progenitor cells (CPCs) using a combi-
nation of factors, including WNT agonists (WNT3a or
CHIR99021), BMP4, and bFGF. This approach has been
shown to generate ISL1* KDRTNKX2.5'°% CPCs (Wang
et al. 2021a, b) or MesP1* CPCs (Neri et al. 2019), which
are more likely to develop into heart valve endothelial
cells. In the second stage, two or more signals, such as
BMP, FGE, TGEB, and NOTCH, are simultaneously
activated to promote the generation of valvular endo-
cardial cells (ECCs), which have been demonstrated to
be the major origin of valvular cell (Lincoln et al. 2006).
Subsequently, 80% of the cells become CD317CD144"
VECs (Toshima et al. 2020). VEGF has been shown to
induce endothelial cell fate (Gomez-Stallons et al. 2016).
In the third stage, TGE-f, retinoic acid, BMP, or FGF is
employed to trigger the endothelial-to-mesenchymal
transition (EMT) to obtain VICs. BMP and epidermal
growth factor (EGF) signaling play crucial roles in VICs
proliferation and maturation. Matrices such as collagen
hydrogels have been reported to promote the EMT pro-
cess (Nachlas et al. 2018).

In the realm of hiPSC differentiation into valve cells, the
yield of VECs and VICs remains relatively low. Single-cell
sequencing data from human valves have revealed a high
degree of heterogeneity in both endothelial and inter-
stitial cells within calcified valves (Xu et al. 2020). How-
ever, due to the absence of specific cell markers, this issue

. Cardiac Valve endothelial Valve interstitial
hiPSC progenitor cell cells (VEC) cells (VIC)
G2 s1 S2 S3
*ﬁ‘J - -_—

Markers
S1 S2 S3

Signaling

pathway

Addictions

Magnet sorting
before further step

Magnet sorting
before further step

Fig. 2 Strategy of hiPSC-derived valve endothelial cells and valve interstitial cells. hiPSC differentiation into VICs was achieved through a three-stage
approach. Stage 1 involved mainly WNT signaling activation, promoting cardiac progenitor cell specification. Stage 2 employed BMP signaling
activation for VEC generation. Finally, endothelial-mesenchymal transition was induced to obtain VICs. Magnetic bead sorting was implemented

at each stage to enhance VIC purity and homogeneity
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has yet to be resolved. To address these challenges and
advance the field, researchers are exploring various strat-
egies. The development of novel single-cell sequencing
techniques, spatial transcriptomics, and high-resolution
mass spectrometry will provide a deeper understanding
of valve development and calcification processes. Addi-
tionally, the integration of high-throughput compound
screening and machine learning approaches could facili-
tate the identification of novel signaling pathways and
small molecules that enhance hiPSCs differentiation into
functional valve cells.

In conclusion, while challenges remain in the field of
hiPSCs differentiation into valve cells, the advent of
innovative technologies and the adoption of data-driven
approaches hold promise for significant advancements.
Overcoming these challenges will pave the way for the
development of robust and efficient differentiation proto-
cols, enabling the production of high-quality valve cells
for regenerative medicine applications.

Calcific induce approaches

As key inducers of valve calcification, valve interstitial
cells (VICs) undergo force stress and chemical stimuli
that facilitate myofibroblast differentiation and osteo-
genic differentiation. Myofibroblast-like cells play a
pivotal role in extracellular matrix remodeling dur-
ing the pathogenesis of aortic valve calcification (Jian
et al. 2003). TGFp-1 is the most extensively studied fac-
tor in inducing a-SMA* myofibroblast-like cells (Jian
et al. 2003; Walker et al. 2004). This process is influ-
enced by matrix stiffness (Gwanmesia et al. 2010; Rod-
riguez & Masters 2009). Regarding pro-osteogenic
progression, there are two major mediums: 1) osteo-
genic medium: This medium includes dexamethasone,
B-glycerophosphate, and L-ascorbic acid (AC) (Osman
et al. 2006). B-Glycerophosphate serves as a phosphate
source for bone mineral and induces osteogenic gene
expression via extracellular related kinase phosphoryla-
tion; ascorbic acid facilitates osteogenic differentiation
by increasing collagen type 1 secretion, and dexametha-
sone induces Runx2 expression, and Runx2-bone mor-
phogenetic protein interaction is essential for osteogenic
differentiation (Hamidouche et al. 2008; Kundu et al.
2009). 2) Pro-calcifying medium containing NaH,PO,
and ascorbic acid promotes inflammation and minerali-
zation in VICs (Bouchareb et al. 2015; Goto et al. 2019).
Other factors like LPS (Babu et al. 2008), VIC and VEC
co-culture(Hjortnaes et al. 2015; Stadelmann et al. 2022)
also activates inflammation and osteogenesis.
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3D in vitro models of CAVD

Though VICs in culture appear to be the most relevant
in vitro model for valve calcification, VICs are proved to
undergo spontaneous activation in 2D culture (Benton
et al. 2009a, b). Therefore, 3D in vitro CAVD models are
actively explored. We classified 3D CAVD models into
ex vivo model and 3D cell culture model by ECM compo-
sition, as summarized in Table 2.

Ex vivo CAVD model

Ex vivo CAVD models aim to preserve the intact valve
structure in vitro, providing direct evidence to elucidate
the structural destruction and calcification induced by
mechanical and metabolic factors. Valves can be sub-
jected to various biochemical and hemodynamic stimuli
to explore their role in cardiac valve remodeling. Uti-
lizing the Miniature Tissue Culture System (MTCS)
(Kruithof et al. 2015), researchers perfused fresh mouse
hearts in vitro, demonstrating that inorganic phosphate
plus Dex, not osteogenic medium, induced valve leaflet
calcification (Kruithof et al. 2021). Pig aortic valves sewn
into the heart valve chamber of a bioreactor system and
cultured in pro-degenerative medium for 7 days exhib-
ited significant leaflet calcification (Niazy et al. 2021). In
contrast, mechanical stress is more commonly employed
in ex vivo models. Rat aortic valves cultured in a bioreac-
tor flow culture system to replicate normal valve cycling,
with constant opening and closing, altered gene expres-
sion profiles associated with valve remodeling or repair
(Maeda et al. 2016) designed a device that simultaneously
exposes both surfaces of aortic valve leaflets to their
native side-specific shear stress, elucidating the role of
fluid shear stress, maintaining leaflet structure, cell via-
bility, and cell proliferation for the intended culture dura-
tion of 96 h (Sun et al. 2011).

Ex vivo CAVD models often require complex equip-
ment and incur significant costs, making them suscep-
tible to contamination or loss of sterility. Moreover, the
intrinsic complexity of tensional bioreactor systems leads
to highly variable outcomes, compromising the reliabil-
ity of study results. As the convergence of biomedical and
tissue engineering technologies progresses, the develop-
ment of ex vivo calcification models will evolve towards
greater precision and standardization, while also increas-
ing in complexity to accurately replicate the pathophysi-
ological environment of human valves, including the
presence of inflammatory cell infiltrates. These advance-
ments will provide essential support for elucidating the
mechanisms of valve calcification and paving the way for
novel therapeutic strategies.
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3D cell culture model

Scaffold-based 3D system Apart from ex vivo models
that preserve the valve’s native ECM, constructing 3D
cell culture models of VICs and/or VECs using various
matrices appear to be a more straightforward and practi-
cal approach. Based on the matrix type, we can catego-
rize 3D culture models into scaffold-based co-culture
systems and hydrogel-based systems. Scaffolds can be
derived from decellularized ECM or non-hydrogel syn-
thetic materials. Decellularized sheep aortic valves
treated with trypsin or fsL-mediated photodisruption to
enhance dECM permeability, when reseeded with sheep
VICs, can potentially recreate the native valve’s cell-ECM
interactions (Sun et al. 2011). However, improving inter-
stitial repopulation in detergent-derived dECM remains
challenging. Another study used cryo-electrostatic spin-
ning technology to construct a bilayer scaffold that
was encoded with fibronectin to support the growth of
porcine VICs and VECs. The scaffold was then treated
with osteogenic medium, which resulted in increased
cell interaction and the expression of Runx2 and SPP1
(Stadelmann et al. 2022).

Hydrogel-based 3D culture model Three-dimensional
(3D) cell culture systems, particularly those employing
naturally derived extracellular matrix (ECM) polymers,
offer a promising approach to mimicking the microenvi-
ronment of native valve tissue and studying the behavior
of valve cells (Hjortnaes et al. 2016). Hydrogels are broadly
categorized into natural hydrogels, synthetic hydrogels,
and hybrid hydrogels. Natural hydrogels exhibit excellent
biocompatibility but are limited in mechanical proper-
ties like stiffness and stretchability. For instance, collagen
hydrogels are widely employed for the 3D culture of valve
interstitial cells (VICs) due to their ability to support cell
spreading and proliferation (Gee et al. 2021; Hof et al.
2016; Lim et al. 2016; Sapp et al. 2015). However, colla-
gen hydrogels are prone to shrinkage and may not pro-
vide adequate mechanical support (Hof et al. 2016). Syn-
thetic hydrogels achieve superior mechanical properties
through chemical cross-linking, but their biocompatibil-
ity may be compromised. Hybrid hydrogels, which com-
bine natural and synthetic biomaterials, have emerged as
promising ECM analogues for studying VICs behavior in
3D microenvironments. VICs cultured in 3D methacrylic
hyaluronic acid (Me-HA) hydrogels exhibit restricted
spreading morphology in the absence of cell adhesion
motifs (Duan et al. 2013). Additionally, methacrylic gela-
tin (Me-Gel) hydrogel allows VICs to retain their native
morphology (Benton et al. 2009a, b). Hybrid hydrogels
employed in CAVD tissue construction include colla-
gen-Glycosaminoglycans(GAGs) (Bramsen et al. 2022),
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HAMA-GelMA (Hjortnaes et al. 2016; Meerman et al.
2021), Gelatin methacrylation/GAG (Porras et al. 2018),
Me-HA-Me-Gel (Duan et al. 2019), and matrigel-collagen
(Lam et al. 2019) hydrogel. These hybrid hydrogels offer
a balance of biocompatibility and mechanical proper-
ties that better recapitulate the native valve tissue micro-
environment. Additionally, hydrogels can be fabricated
into shaped substrates to induce valve calcification. Duan
et al. employed a custom photomask-guided photo-cross-
linking technique with human aortic valve interstitial
cells (HAVICs) to generate 3D micropatterned bioactive
hydrogels, demonstrating that striped micropatterning
promotes osteogenic differentiation of diseased HAVICs
in osteogenic medium (Duan et al. 2019).

With regard to cell selection for CAVD 3D culture mod-
els, hydrogels are most commonly mixed with VICs, and
then induction conditions, such as osteogenic medium,
TNF-«, and TGEp, are added to stimulate calcification
formation and prevent spontaneous activation of VICs
in planar culture (Lim et al. 2016; Hjortnaes et al. 2015).
To further elucidate the interactions between VECs
and VICs in CAVD, researchers have employed vari-
ous in vitro culture models. One approach involves co-
seeding VECs and VICs within mechanically constrained
collagen hydrogels (Gee et al. 2021). Alternatively, VICs
can be encapsulated within a hydrogel, with VECs
seeded on top (Bramsen et al. 2022). By manipulating
the hydrogel stiffness (Bramsen et al. 2022) or exposing
the cells to osteogenic medium (Vadana et al. 2020), the
formation of calcified nodules can be enhanced, facili-
tating the study of VECs-VICs interactions under these
conditions. Grande-Allen’s study, which cultured por-
cine aortic valve interstitial cells (PAVICs) and porcine
aortic valve endothelial cells (PAVECs) within collagen I
hydrogels containing the GAGs, chondroitin sulfate (CS)
or hyaluronic acid (HA), demonstrated that CS enhanced
the formation of calcified nodules even in the absence of
osteogenic culture medium (Grande-Allen et al. 2007).
These methods have provided valuable insights into cell-
cell interactions in the context of CAVD. 3D bioprinting
technology has emerged as a valuable tool for generating
3D valve culture systems. Immobhr et al. investigated opti-
mal printing and culture parameters and hydrogel com-
position for 3D bioprinting of VICs (Immohr et al. 2022,
2023). They proved that using DMEM-based hydrogels
can significantly improve the long-term cell viability and
overcome printing-related cell damage.

In addition to cellular considerations, shape and func-
tion mimicry are also crucial aspects of in vitro valve and
calcification modeling. Sapp et al. seeded VICs within a
3D stacked paper-based system to effectively replicate
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the full thickness of native valve tissue (Sapp et al. 2015).
Other approaches utilize functional bioreactors with
engineering technology to investigate the effects of
mechanical strain on valvular interstitial cells (VICs) and
the underlying molecular pathways involved in valve cal-
cification. For instance, pig VICs mixed with type I col-
lagen inoculated into an anisotropic biaxial strain bio-
reactor exhibited time-dependent VICs orientation and
collagen fiber alignment (Gould et al. 2012). Another
study combined collagen I, human aortic smooth mucle
cells (HASMCs), and HAVICs with osteogenic condi-
tions to evaluate the effect of cyclic strain on calcifica-
tion (Ferdous et al. 2011). Mendoza et al. developed a
three-dimensional microfluidic device of the aortic valve
fibrosa to study the effects of shear stress and endothe-
lial cell presence on calcification (Mendoza et al. 2022).
Other type is using functional bioreactors with engineer-
ing technology, to investigate the effects of mechani-
cal strain on valvular interstitial cells (VICs) and the
underlying molecular pathways involved in valve calci-
fication. Pig VICs mixed with type I collagen inoculated
into anisotropic biaxial strain bioreactor causes time
dependent VICs orientation and collagen fiber alignment
(Gould et al. 2012). Another research combined collagen
I, HASMCs and HAVICs with osteogenic conditions to
evaluate effect of cyclic strain on calcification (Ferdous
et al. 2011). Furthermore, Mendoza et al. developed a
three-dimensional microfluidic device of the aortic valve
fibrosa to study the effects of shear stress and endothelial
cell presence on calcification (Mendoza et al. 2022).

Despite relatively rapid development of in vitro 3D mod-
els of CAVD in recent years, there are still some limita-
tions. Firstly, current hydrogel systems fail to replicate the
composition and high cell activity of the native extracel-
lular matrix, necessitating further experimentation and
refinement. Secondly, due to the inherent nature of gels,
diffusion must be considered when applying risk factors
stimulation. Thirdly, simulating mechanical stimulation
of valve tissue remains a challenge. Overall, 3D aortic
valve calcification tissue models are still in their nascent
stages, but their potential applications hold immense
promise. With the continuous advancement of interdis-
ciplinary integration, innovation in material science, and
the refinement of valve cell differentiation and 3D print-
ing technologies, 3D tissue models are poised to become
indispensable tools for CAVD research and treatment.

Conclusions

CAVD is the most common valvular heart disease, pri-
marily affecting the elderly population. As the aging prob-
lem worsens, the incidence of CAVD is expected to rise
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significantly. Establishing reliable CAVD models is crucial
for advancing our understanding of the disease’s patho-
genesis and identifying effective treatment strategies. The
development of CAVD models has undergone significant
advancements over the past two decades. Animal models
have played a pivotal role in elucidating the disease’s intri-
cacies and have reached a considerable level of maturity.
Transgenic mice models, combined with high-fat diet
feeding or mechanical injury, allow for in-depth analysis of
the impact of target genes on CAVD progression. Larger
animal models, such as pigs, offer closer resemblance to
human valve structure and pathophysiological responses.
Each species, including mice, rabbits, and pigs, possesses
unique advantages, and these animal models have made
substantial contributions to our understanding of CAVD
pathogenesis. However, they face limitations in clearly
defining the distinct stages of CAVD disease and overcom-
ing phenotypic differences arising from species variations.

In vitro models, utilizing valve interstitial cells (VICs),
have provided valuable insights into CAVD pathogen-
esis by examining the effects of various stimuli, such
as chemical factors, shear stress, and cyclic strain. The
advantage of in vitro models lies in their ability to rap-
idly and precisely manipulate a large number of variables.
Additionally, iPSCs-based differentiation technology
holds promise for generating large quantities of human
valve cells. However, VICs in flat culture have a tendency
to spontaneously activate, and simulating the calcifica-
tion changes induced by stress shock in the valve is chal-
lenging at the monolayer cell level. In response to these
limitations, 3D culture systems, including bioreactors,
microfluidic systems, and hydrogel hybrid systems, have
emerged as promising advancements in CAVD in vitro
disease modeling. These systems offer a more realis-
tic representation of the complex microenvironment of
the native aortic valve, enabling a more comprehensive
assessment of cellular interactions and responses.

Despite the shortcomings of various models, the
intersection of disciplines and the emergence of new
technologies hold immense potential to further refine
CAVD models. By addressing these limitations and
embracing innovative approaches, researchers can
gradually unravel the intricacies of CAVD and ulti-
mately pave the way for the development of effective
therapies to prevent and mitigate the disease.

Abbreviations

3D Three-Dimensional

AC Ascorbic Acid

AV Aortic Valve

AVICs Aortic Valvular Interstitial Cells
AVS Aortic Valve Stenosis

AVWI Aortic Valve Wire Injury

CAVD Calcific Aortic Valve Disease
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CPCs Cardiac Progenitor Cells

(@) Chondroitin Sulfate

dECM Decellularized Extracellular Matrix
ECM Extracellular Matrix

EGF Epidermal Growth Factor

EndoMT  Endothelial-to-Mesenchymal Transition
GAGs Glycosaminoglycans

HA Hyaluronic Acid

HASMCs  Human Aortic Smooth Muscle Cells
HAVICs Human Aortic Valve Interstitial Cells
HFD High-Fat Diet

HFCD High-Fat and Choline Diet

hiPSC Human induced Pluripotent Stem Cells
LPS Lipopolysaccharide

Me-Gel Methacrylic Gelatin

Me-HA Methacrylic Hyaluronic Acid

MTCS Miniature Tissue Culture System
PAVECs Porcine Aortic Valve Endothelial Cells
PAVICs Porcine Aortic Valve Interstitial Cells
PSCs Pluripotent Stem Cells

SMCs Smooth Muscle Cells

VECs Valve Endothelial Cells

VICs Valve Interstitial Cells

WHHL Watanabe Heritable Hyperlipidemic
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