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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons.
Currently, no effective therapy is available to treat ALS, except for Riluzole, which has only limited clinical benefits.
Stem-cell-based therapy has been intensively and extensively studied as a potential novel treatment strategy for
ALS and has been shown to be effective, at least to some extent. In this article, we will review the current state of
research on the use of stem cell therapy in the treatment of ALS and discuss the most promising stem cells for the
treatment of ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS) (or Lou-Gehrig’s
disease) represents a neurodegenerative disorder charac-
terized by progressive degeneration of motor neurons
and its symptoms including muscle atrophy, weakness,
fasciculation, and spasticity [1]. The condition is the
most common motor neuron disease, with a worldwide
incidence of 2–3 per 100,000 and a prevalence at 4–6
per 100,000 [2], posing a heavy burden on both the families
involved and society at large. Patients tend to die 3–5 years
after diagnosis due to progressive motor neuron loss and
weakness of skeletal muscles, especially those muscles
responsible for breathing, which is the primary cause of
death caused by ALS [3]. The pathogenesis of ALS is
believed to be multifactorial. For the familial forms, several
genetic mutations have been identified as being associated
with the disease, including mutations in Cu superoxide dis-
mutase (SOD1), TAR DNA binding protein-43 (TDP-43),
the C9orf72 gene (the most common mutation underlying
familial forms of ALS), and the recently discovered TBK1
gene encoding a protein involved in two essential cellular
pathways of emerging interest in ALS research: autophagy
and inflammation [4]. In the more common forms of spor-
adic ALS, neurodegeneration might result from an intricate
interaction among multiple cell types and several different

mechanisms, including protein aggregation, glutamate-
mediated excitotoxicity, mitochondrial dysfunction, oxida-
tive stress, impaired axonal transportation, altered glial cell
function, and deficiency of neurotrophic factors [5]. All of
these factors can eventually lead to the disruption of axonal
transport processes via intracellular accumulation of neu-
rofilaments [3, 6]. This heterogeneity of ALS makes it diffi-
cult to identify the exact cause of ALS and so develop
effective therapies. Except Riluzole, which is believed to be
able to extend survival by a few months [7], to date, few
treatments have proved to be highly or consistently effect-
ive [8].
Stem cell therapy is a promising potential treatment

option for ALS, given stem cells’ remarkable plasticity and
ability to differentiate into multiple neuronal lineages [9];
they are consequently a valuable source for replacement
cell therapy. When locally or systemically transplanted,
stem cells are capable of migrating to disease-associated
loci to exert the desired therapeutic effect [10]. Currently
available cell therapies may take advantage of a variety of
stem cells to modify disease pathophysiology [11], slow
down or even halt the progression of disease, possibly by
providing protective factors to surrounding cells, modulat-
ing the host immune environment, inhibiting inflamma-
tion, or even replacing injured cells [12–17]. Several types
of stem cells have been studied as possibilities for treating
ALS, including neural stem cells (NSCs), mesenchymal
stem cells (MSCs), glial-restricted progenitor cells (GRPs),
embryonic stem cells (ESCs), and induced pluripotent stem
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cells (IPSCs) [18]. Here, we will comprehensively review
the current state of research concerning treatments for
ALS using stem cells and provide information on aspects
of further research into stem cell-based therapies for ALS.

Neural stem cells
NSCs originate from the neuroectoderm of early em-
bryos and are found in embryonic, fetal, and adult ner-
vous systems. They possess the potential to differentiate
into any cell type in the central nervous system (CNS)
(although NSCs derived from adult tissues show a more
limited differentiation capacity [19]). The integration
ability and prospective therapeutic efficacy of human
neural stem cells (hNSC) has been demonstrated in
rodent models of neurological diseases [20–23]. Apart
from regenerating lost neuronal cells, NSCs can also im-
prove the functional outcomes of rats through auxiliary
mechanisms, such as neurotrophism [24–26] and im-
munosuppression [27–29].
A number of studies have demonstrated that NSC

therapy had beneficial effects on ALS rats [17, 30].
Transplanted NSCs could differentiate into neurons and
form synaptic connections with host tissues, delay dis-
ease onset and progression, and prolong the survival of
experimental animals [17]. Hefferan et al. found that
grafted hNSCs protected adjacent motor neurons and
helped to achieve transient functional improvement [31],
and they speculated that this transient functional im-
provement was attained possibly because transplanted
NSCs elicited neurogenesis and triggered intrinsic repair
mechanisms in the spinal cord [32]. More encouragingly,
Teng and co-workers found that besides a delay in dis-
ease progression and an improvement in motor function,
a quarter of the NSC-grafted ALS mice survived three
times longer than their non-grafted counterparts [33].
Given the pre-clinical support for NSC-based therap-

ies, in 2009, the FDA approved a clinical trial on the
safety and tolerability of surgical delivery of stem cells
and any resulting cell toxicity [34]. A total of 18 patients
with ALS received an intraspinal fetal-derived NSC
(NSI-566RSC) engraftment following a risk escalation
paradigm, progressing from non-ambulatory to ambula-
tory subjects, lumbar to cervical spinal cord segments,
and unilateral to bilateral injections across five cohorts.
After monitoring the patients for 2.5 years, all patients tol-
erated the procedure without major surgical complications,
such as injection-attributable neurological worsening, and
there were no indications that the stem cells themselves
were either toxic or injurious to the spinal cord. In an
expansion of the above study using NSCs isolated from
human fetal spinal cord tissues, Mazzini et al. transplanted
human fetal brain tissues into the anterior horns of the
spinal cord and additionally used a much higher cell dos-
age and a milder immunosuppression regimen [35]. They

verified the safety and tolerability by clinical assessment
against safety measures and follow-up, utilizing neuroimag-
ing and other techniques [35]. These studies have paved the
way for future clinical trials on the efficacy and dosage of
NSC treatment for ALS. A phase I clinical trial that began
in July 2011 is designed to verify the safety of expanded
hNSCs and microsurgery and to evaluate their effect on the
quality of life of the patients (ClinicalTrials.gov Identifier:
NCT01640067). A phase II clinical trial, which started in
May 2013, is aiming to assess the feasibility, safety, toxicity,
and maximum tolerated (safe) dose of the NSC treatment
(ClinicalTrials.gov Identifier: NCT01730716).
However, in addition to two issues which hamper NSC

studies, namely ethical issues and immune rejection
problems, NSCs are derived from fetal spinal cord (NSI-
566RSC) [36] or fetal brain tissues [35], two sources of
cells that are very limited. Consequently, their large-
scale use in clinical trials remains a challenge.

Mesenchymal stromal cells
MSCs are multipotent adult stem cells that can be easily
extracted from various adult connective tissues (i.e.,
bone marrow and adipose tissue) and can differentiate
into a variety of cells [37–39].
A number of studies employing animal models of ALS

have investigated the therapeutic potential of MSCs by
injecting cells either peripherally or directly into the
spinal cord. Marconi et al. assessed the efficacy of the
systemic administration of adipose-derived mesenchymal
stem cells (ASC) in SOD1-mutant mice and found that
the cells not only significantly delayed motor deterior-
ation for 4–6 weeks and maintained the number of
motor neurons but also up-regulated the levels of glial-
derived neurotrophic factor (GDNF) and basic fibroblast
growth factor (bFGF) in the spinal cord. Given that
ASCs produce bFGF but not GDNF, these findings indi-
cated that ASCs may promote neuroprotection either
directly and/or by modulating the response of local glial
cells toward a neuroprotective phenotype [40]. Similarly,
intramuscular transplantation of MSCs engineered to
secrete GDNF was found to attenuate motor neuron loss
and prolong the lifespan of ALS rats [41]. In another
study, MSCs were genetically modified to release GDNF
or VEGF, and when injected into animals, they extended
survival and alleviated the loss of motor function [42].
The therapeutic effect of MSCs may primarily capitalize
on innate trophic support from themselves or from the
delivery of augmented growth factors. Intraspinal, intra-
cerebral, intrathecal, and intravenous injection of au-
tologous MSCs in SOD1-G93A mice have also reported
beneficial effects on disease progression, including slo-
wed loss of motor neurons, improved motor function,
and extended survival [43–48]. Given the fact that
MSCs can deliver neurotrophic, anti-inflammatory, and
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immunomodulatory molecules [49, 50], these cells are a
promising treatment approach for ALS.
In 2003, Mazzini and colleagues conducted the first

clinical studies to determine the safety and tolerability of
direct intraparenchymal transplantation of MSCs for the
treatment of ALS. MSCs were isolated from allogeneic
ALS patients’ bone marrow aspirates and transplanted
into the thoracic spinal cord. While there was no func-
tional improvement following MSC transplantation, no
serious adverse effects and no detrimental effects on
neurological function were reported [51]. Their follow-up
studies, lasting more than 4 years after surgery, revealed
no signs of toxicity or abnormal cell growth and showed
that four patients might have benefited from the treatment
[52, 53]. Subsequently, a number of clinical trials have
evaluated autologous MSC transplantation and demon-
strated that intraspinal, intrathecal, and intracerebral
transplants were safe and feasible [54]. It is worth men-
tioning that three clinical studies innovatively mobilized
endogenous MSCs by using granulocyte-colony stimulat-
ing factor (G-CSF) in ALS patients, and their MSCs were
instantaneously increased and no major adverse events
were found in any of the three studies [55–57]. Moreover,
BrainStorm Cell Therapeutics developed a cell type trade-
marked as “NurOwn™” for the treatment of ALS. The cells
can differentiate into specialized neuron-supporting cells
capable of stably secreting neurotrophic factors (MSC-
NTFs). Currently, a phase II clinical trial using NurOwn
cells began in 2014 to evaluate the safety and efficacy of
the cells (ClinicalTrials.gov Identifier: NCT02017912).
Another phase II study using NurOwn cells, this time
in a dose-escalating clinical study, is now under way
(ClinicalTrials.gov Identifier: NCT01777646).
MSCs can be relatively easily obtained from adult tis-

sues, and their application does not pose substantial eth-
ical issues [58, 59], and because ALS does not influence
MSC expansion and differentiation [60], the cells can be
extracted from patients themselves, thus avoiding im-
mune rejection. So, MSCs seem to be an attractive can-
didate for ALS cell therapy. However, deriving MSCs
from either bone marrow or adipose tissue causes, to
some degree, trauma. What is more, MSCs are of meso-
dermal origin and thus their ability to transdifferentiate
into neuronal cells of ectodermal origin is questionable
[61]. And as far as we know, so far, there are no robust
pre-clinical studies on the long-term safety, in vivo differ-
entiation, dosage, and biological activity of human MSCs
used for the treatment of ALS. Therefore, studies on its
further application in clinical practice are warranted.

Glial-restricted progenitor transplantation
Many studies have looked into the role of astrocytes in
ALS and demonstrated that astrocytes derived from
SOD1 mice and ALS patients could induce motor

neuron death, possibly through a Bax-dependent mech-
anism triggered by toxic soluble factors (termed “glio-
transmitters”) [62–66]. When astrocytes derived from
SOD1 glial progenitors were transplanted into mice, they
could induce host motor neuron death, focal weakness
of the corresponding limb, and gliosis of host astrocytes
and microglia [67, 68]. Recent research has demon-
strated that human glial progenitor transplantation and
gene expression was independent of the ALS neurode-
generative spinal cord environment [69], indicating that
some cell autonomous changes take place in astrocytes
expressing ALS-linked mutations and treatment of ALS
with astrocytes is feasible.
GRPs are the earliest progenitor cell type derived from

the embryonic spinal cord, and they show a tripotential
phenotype in their ability to differentiate to oligodendro-
cytes and two types of astrocytes [70, 71]. Lepore et al.
isolated GRPs from the rat embryonic spinal cord and
transplanted them into the cervical spinal cord of SOD1-
G93A rats. After injection, they found that the grafted
cells survived in the diseased tissues and differentiated
efficiently into astrocytes, with microgliosis alleviated at
the transplanted sites; additionally, survival was extended,
motor neuron loss was ameliorated and declines in fore-
limb motor capability slowed, and respiratory functions
improved [72]. Later, another study conducted by the
same research team showed that hGRP (also referred to as
Q-Therapeutics’ Q-Cells®) derived from human fetal fore-
brain robustly survived and migrated into both gray and
white matter and differentiated into astrocytes in SOD1-
G93A mice spinal cord. However, Q-Cells engraftment
did not lead to motor neuron protection or any thera-
peutic benefits in terms of functional outcome measures
[73]. The discrepancies between the two GRP transplant-
ation studies may be due to the differences in cell types
(allograft versus xenograft, rat spinal versus human
forebrain-derived), cell maturity, the number of injection
sites, and transplanted cells [74]. As the functions of astro-
cytes vary depending upon their origins [75], the conflict-
ing results suggest to us that further research should be
conducted to understand the influence of cell type and cell
number on clinical outcome.
Like hNSCs, hGRPs are derived from fetal forebrain

tissues [76], and their widespread clinical application is
greatly hampered by the scarcity of resources, ethical
issues, and potential for immune rejection.

Embryonic stem cells
ESCs, derived from the inner cell mass of the blastocyst
[77], can be efficiently differentiated into any cell type
both in vitro and in vivo, and these differentiated cells
present morphological, biochemical, and physiological
traits similar to their in vivo counterparts. Many important
and decisive differentiation factors have been discovered,
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and simple protocols for ESC differentiation into motor
neurons are available.
In 2005, Zhang et al., for the first time, reported the

successful differentiation of human ESC (hESC) into a
motor neuron (MN) phenotype [78]. Wyatt et al. trans-
planted hESCs-derived motor neuron progenitors (hMNPs)
into three animal models of motor neuron loss: SMA
(Δ7SMN), ALS (SOD1-G93A), and spinal cord injury (SCI)
[79]. The transplanted cells survived, differentiated, and
secreted physiologically active growth factors in vivo,
thereby significantly increasing the number of spared
endogenous neurons. The ability to maintain dying motor
neurons by providing motor neuron-specific neurotrophic
support is a powerful potential treatment strategy for ALS.
Though the use of hESCs in treating ALS in animals

are encouraging, not all hESC lines can differentiate into
neural lineages, probably because of inherent differences
and/or the underlying genetics of the embryos from
which the lines were derived [80, 81]. In addition, hESCs
are derived from pre-implantation human embryos [82],
and although hESCs can be maintained and expanded
indefinitely, their use comes with significant ethical con-
cerns and potential immune response issues.

Induced pluripotent stem cells
IPSCs can be derived from patients’ somatic cells by re-
programming with specific factors [83]. iPSCs express
stem cell markers and have the ability to give rise to all
three germ layers, as these cells are derived from adult
somatic tissues they bypass ethical concerns, and so are
promising candidates for stem cell therapy for ALS.
In 2008, Dimos et al. developed the first strain of hu-

man iPSCs from an 82-year-old familial ALS woman [84].
Mitne-Neto and colleagues successfully reprogrammed
fibroblasts from an ALS8 patient into pluripotent stem
cells and differentiated them into motor neurons [85].
Popescu et al. showed that iPSC-derived neural progenitors
efficiently engrafted into the adult spinal cord and could
survive in high numbers [86]. They postulated that the
transplantation of stem cell-derived neural progenitors
might exert a dual beneficial effect: replacing lost motor
neurons and serving as a source of neurotrophic factors
and modifiers of the toxic environment. Recently, a similar
study generated and purified a specific NSC population
from human iPSCs. After injection of these cells into
SOD1-mutated mice, NSCs engrafted and migrated into
the CNS, resulting in improved neuromuscular function
and motor unit pathology and a significantly prolonged life
span [87]. These beneficial effects are believed to be linked
to multiple mechanisms, including production of neuro-
trophic factors and reduction of microgliosis and macro-
gliosis, thus leading to increased resistance to death of
motor neurons and neurodegeneration. In a series of long-
term studies, Chen et al. showed iPSC-derived neural

progenitors mostly differentiated into astrocytes, replaced
the endogenous astrocytes, formed networks through their
processes, and encircled endogenous neurons [68]. Preclin-
ical studies, currently being conducted at Johns Hopkins
University, use human iPSC-derived glial-restricted precur-
sors (iPSC-GRPs) [88] and may offer perspectives for the
use of iPSC-based therapy in ALS [87].
Among all the cells mentioned above, hiPSCs have in-

comparable advantages over other cells. Currently, hiPSCs
can be obtained from the blood [89] or urine [90] and so
are relatively easily available, rendering their use feasible
in clinical treatment. Therefore, hiPSCs are an attractive
candidate for ALS cell therapy. A major concern about
the application of hiPSCs might be its potentially high
tumor-forming capability. However, in actual research of
hiPSCs, tumor formation was rare [68, 86, 91, 92], except
for a very small proportion of grafts that remained positive
for neural progenitor marker genes [91]. If the number
and the differentiation of transplanted neural progenitor
cells are well controlled, the possibility for tumor forma-
tion can be substantially decreased. Additionally, concerns
about random viral integration could be ameliorated by
the development and optimization of the use of episomal
plasmids, recombinant proteins with membrane perme-
able peptides, or Sendai virus vectors.

Conclusion
Riluzole, the only FDA-approved treatment for ALS, has
only a slight positive effect on survival and function in
some patients and poses a high financial burden on pa-
tients and their families. Over the past 20 years, the results
of most clinical trials on other drugs have been disap-
pointing [93], making it urgent to find new and effective
alternatives for the treatment of ALS. With the advent of
regenerative medicine, stem cell transplantation has
emerged as a promising potential new avenue of treat-
ment for a wide array of degenerative diseases for which
no specific or effective treatment is currently available.
Stem cell therapies may modify disease pathophysi-

ology [11], slow down or halt the progression of disease,
and even improve neuromuscular function and motor
unit pathology, possibly by providing protective factors to
surrounding cells, modulating the host immune environ-
ment, inhibiting inflammation, or even replacing injured
cells [12–17]. For patients carrying genetic mutations
related to ALS, genetic corrected stem cells could be gen-
erated to correct the mutation, and for those carrying no
genetic mutation, the protective and replacing effect of
allogeneic stem cells are available. The use of stem cells
may modify disease physiology, decreasing protein aggre-
gation, and reducing glutamate excitoxicity. The
encouraging results of experimental studies on stem cell
therapy may promote its clinical application for the treat-
ment of ALS. Yet, the prospect of its clinical use depends
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on the resolution of some crucial issues. The most import-
ant concern that remains to be addressed is the uniform
generation and preparation of the cells under good manu-
facturing practice (GMP).
For clinical application, cell replacement therapy needs

to be thoroughly tested by standardized studies in vitro
followed by rigorous clinical trials in humans. Although we
still have a long way to go, the treatment of ALS with hu-
man stem cells remains a viable and promising alternative.
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