Skip to main content


Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Fig. 1 | Cell Regeneration

Fig. 1

From: Stem cell aging in adult progeria

Fig. 1

Aging-associated epigenetic changes on histone modifications. a In aged somatic and stem cells, chromatin is progressively changed. H3K4me3, H4K20me3, and H4K16ac are increased whereas H3K9me3, H3K27me3, and H3K9ac are decreased. Chromatin remodeling proteins (e.g., HP1α and NuRD) and DNA methylation are also decreased globally (not shown). Changes of chromatin structure and organization affect transcriptional activity and genomic stability related to aging. b SIRT1 and SIRT6 are important aging regulators. SIRT1 deacetylates H3K9 and H4K16 and increases H3K9me3 through SUV39H1. SIRT6 also deacetylates H3K9 at telomeric regions. Hyperacetylation of telomeric H3K9 impairs association of the WRN protein with telomeres, hence, leading to premature aging

Back to article page