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In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery and
regenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including the
adipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials.
SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices
(cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control is
required. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed.
These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations,
and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used.
Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide an
overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are
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Introduction

Subcutaneous human adipose tissue is an abundant
source of mesenchymal stromal/stem cells (MSC), which
are promising for several therapeutic applications in es-
thetic and regenerative medicine. For a long time, adipose
tissue has been considered to be an inert tissue and has
usually been discarded as surgical waste after liposuction
[1, 2]. Nevertheless, it is a highly vascularized tissue and an
abundant source of multiple cell types such as MSC (3, 4].
MSC with similar characteristics can be found in a variety
of other tissues including the bone marrow, muscle, con-
nective tissue, skin, placenta, blood, cord blood, synovium,
periosteum, and perichondrium [2, 5-19]. Bone marrow-
derived mesenchymal stromal/stem cells (BM-MSC) have
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been extensively used since their discovery in the early 70s
[20], but harvesting bone marrow is accompanied by
certain drawbacks including painful procurement as well as
low stem cell yield. In comparison to BM-MSC, MSC from
adipose tissue, the adipose-derived stromal/stem cells
(ASC), occur at a 100-1000-fold higher frequency within
adipose tissue on a volume basis [21]. Harvesting adipose
tissue is minimally invasive and less painful, and liposuction
is one of the most commonly performed cosmetic proce-
dures without general anesthesia [1]. Additionally, the adi-
pose source offers two options for selection of regenerative
cells: the stromal vascular fraction (SVF) and the ASC con-
tained therein.

The stromal vascular fraction (SVF)

SVF is a heterogeneous mixture of cells isolated by en-
zymatic or non-enzymatic dissociation of adipose tissue
followed by centrifugation in order to remove the differen-
tiated adipocytes, which float over the aqueous layer. The
heterogeneous population of SVF includes endothelial
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cells, erythrocytes, fibroblasts, lymphocytes, monocytes/
macrophages, and pericytes among others, but most
importantly ASC [22-26]. SVF may be used as a source
material to isolate cells for tissue regeneration and has
already been applied in clinical trials [27-32].

Adipose-derived stromal/stem cells (ASC)

ASC can be isolated from the SVF by in vitro cultivation
on plastic surfaces, which results in the accumulation of
spindle-shaped cells characterized by their self-renewal
potency and ability to give rise to at least adipogenic,
osteogenic, and chondrogenic lineages [33-35] (Fig. 1).
Besides that, there is a growing body of evidence that
these cells can generate a variety of other cell types
including neuronal/glial-like cells [36-39], cardiomyo-
cytes [40, 41], endothelial cells [42—44], hepatocyte-like
cells [45, 46], various epithelial cell types [47-49],
keratinocyte-like cells [50], and dental bud structures
[51]. In addition to their extensive differentiation poten-
tial, ASC have been shown to secrete high levels of growth
factors such as epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), keratinocyte growth factor (KGF), platelet-
derived growth factor (PDGF), hepatocyte growth factor
(HGF), transforming growth factor-beta (TGF-f), insulin
growth factor (IGF), and brain-derived neurotrophic
factor (BDNF) [52]. The growth factors are secreted at
bioactive levels and act primarily angiogenic and anti-
apoptotic, and their secretion is significantly increased
under hypoxic conditions [53—57]. Besides growth factors,
ASC also release cytokines including fms-related tyrosine
kinase 3 (FIt-3) ligand, granulocyte-colony stimulating
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factor (G-CSF), granulocyte macrophage-colony stimulat-
ing factor (GM-CSF), macrophage-colony stimulating
factor (M-CSF), interleukin (IL) such as IL-6, IL-7, IL-8,
IL-11, and IL-12, leukemia inhibitory factor (LIF), and
tumor necrosis factor-alpha (TNF-«) [44, 58]. Further,
they are able to interact with cells of the immune system
and have demonstrated to possess immunomodulatory
and anti-inflammatory effects [59-62]. ASC have been
successfully used in clinical studies and trials for treating
soft tissue defects, bone defects, gastrointestinal lesions,
immune disorders, neurological injuries, and cardiovascu-
lar diseases [32, 63-72].

Definition, standardization, and regulation of adipose-
derived cells

Although SVF and ASC have been shown to possess a
wide therapeutic range in vivo, there is still no standard
protocol with uniform parameters for the isolation and
also unclear aspects about the identity of cells isolated
from adipose tissue. Zuk et al. [2] were the first who
identified a cell population derived from human lipoaspi-
rate, which partially resemble BM-MSC in their potency
and functionality. These so-called processed lipoaspirate
(PLA) cells have the ability to self-renew or differentiate
efficiently into the adipogenic, osteogenic, myogenic, and
chondrogenic lineage. Various research groups identified
consistent immunophenotype surface marker whereas the
expression profile changes with passaging. Pittenger et al.
[16] identified mesenchymal, hematopoietic, and endothe-
lial stem cell surface marker in BM-MSC. A similar set of
markers was identified in SVF and ASC ([34], reviewed in
[73]). Castro-Malaspina et al. [74] characterized human
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Fig. 1 Adipose-derived cells: origin, immunophenotype, morphology, and differentiation potential. Lipoaspirate can be easily obtained from the
patient and processed to obtain a heterogeneous cell population, the stromal vascular fraction (SVF). Adipose-derived stromal/stem cells (ASC)
can be isolated from the SVF by in vitro cultivation on plastic surfaces. ASC are characterized mainly by mesenchymal stem cell marker (CD73,
CD90, CD105) at the expense of hematopoietic stem cell marker (CD45) and their spindle-shaped morphology with the ability to differentiate
into the adipogenic, osteogenic, and chondrogenic lineages. The differentiation potential can be analyzed by histological stainings, such as Oil
red O for adipogenic, Alizarin red for osteogenic, and Alcian Blue for chondrogenic differentiation
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MSC within bone marrow via fibroblast colony-forming
units showing cell adherence and the ratio between the
number of cells plated and the number of colonies
formed. Consequently, existing knowledge about SVF and
ASC was identified and collected by the International Fed-
eration for Adipose Therapeutics and Science (IFATS) to-
gether with the International Society for Cellular Therapy
(ISCT) in order to provide guidance for standardization
between different research groups. IFATS and ISCT estab-
lished a “living document” for SVF and ASC where exist-
ing literature is summarized and can be modified in
response to new data and findings from ongoing clinical
studies. According to this declaration, cells should have a
viability of >70 % for SVF and >90 % for ASC. Frequency
of stromal progenitors analyzed with a fibroblast colony
forming unit assay (CFU-F) is expected to be >1 % for
SVF and >5 % for ASC. Regarding SVF cell identity,
immunophenotype should show the following characteris-
tic primary marker profile for stromal cells: CD13, CD29,
CD44, CD73, CD90 positive (>40 %), and CD34 positive
(>20 %), but CD31 (<20 %) and CD45 negative (<50 %). In
contrast, ASC should be positive for CD13, CD29, CD44,
CD73, CD90, and CD105 (>80 %), but negative for CD31,
CD45, and CD235a (<2 %). Moreover, ASC are expected
to have the capacity to differentiate into the adipogenic,
osteogenic, and chondrogenic lineage. The differentiation
potential can be analyzed by histological stainings, such as
Oil red O or Nile red for adipogenic differentiation,
Alizarin red or von Kossa for osteogenic differentiation,
and Alcian Blue or Safranin O for chondrogenic differenti-
ation. Additionally, specific biomarkers can be investi-
gated, such as adiponectin, CCAAT/enhancer binding
protein alpha (C/EBPa), fatty acid binding protein (FABP)
4, leptin and peroxisome proliferator-activated receptor
gamma (PPARYy) for adipogenic differentiation, osteocal-
cin, osterix, and runt-related transcription factor (runx) 2
for osteogenic differentiation and aggrecan, collagen type
II, and (SRY (sex determining region Y)-box (Sox) 9 for
chondrogenic differentiation [33].

Adipose tissue-derived cells, which are for clinical use,
need to fulfill some additional requirements according to
current good manufacturing practice (cGMP) compared
to those used for research applications. These require-
ments are set by regulatory agencies and are intended to
ensure highest possible safety for patients. A major point
is to avoid contact with anything that might carry risk
factors, such as pathogens or substances which might
cause negative reactions in the patient. This also includes
animal-derived components, which are frequently used in
common cell culture procedures. Another requirement
for production under cGMP is the use of certified and
validated instruments and components, which might not
be available for every production step. In case of ASC pro-
duction by common enzymatic method, the following
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points have to be considered: raw material, in this case
adipose tissue, has to be obtained by a validated procedure
in a certified facility. This means that the physician’s
rooms need to be checked for suitability in addition to
applied standard surgery room requirements. Equipment
needs to be certified, and personal has to receive appropri-
ate training. To avoid contamination, the graft needs to be
transported in a closed sterile container, with suitable
temperature maintenance and monitoring. Besides micro-
biological quality control of the adipose tissue, serological
tests of donor blood material have to be performed in
order to ensure that no infectious diseases are transferred
via the fat graft. A medical questioner’s form has to be an-
swered, and a declaration of consent has to be signed by
the donor [75-78].

Enzymatic and non-enzymatic SVF isolation

The most common isolation technique is based on
enzymatic digestion of adipose tissue to obtain the SVF. In
general, enzymes such as collagenase, trypsin, or dispase
are used to digest adipose tissue [33]. Although the isola-
tion techniques for adipose tissue-derived cells are rather
diverse, they follow a certain standard procedure. Differ-
ences lie mainly in numbers of washing steps, enzyme
concentrations, centrifugation parameters, erythrocyte
lysis methods as well as in filtration, and eventually cul-
ture conditions [34, 35, 79-85]. Briefly, the adipose tissue
is washed, followed by enzymatic digestion and the cells
separated by centrifugation from mature adipocytes re-
leased oil and enzyme solution. Commonly used collage-
nases are type I and type II as well as subtypes or
combinations of those [26, 82, 85-90]. GMP grade colla-
genases are produced by recombinant bacteria and are
usually delivered in lyophilized form. Their activity varies
between batches, and their purity varies between manu-
facturers. Nevertheless, enzyme concentrations are usually
given in weight per volume percent (w/v) resulting in
irregularities between different isolations even if the same
protocol is used. Concentrations stated in literature range
from 0.075 % (w/v) to 0.3 % (w/v) [81, 91, 92]. An erythro-
cyte lysis step is usually included to get rid of erythrocyte
contamination and to decrease the amount of cells with
hematopoietic origin. After another optional washing step,
the SVF is either cryopreserved or cultured in expansion
medium. The plastic-adherent cell fraction, including
ASC, can be obtained after passaging or cryopreservation
or further cultivated for expansion for a more homoge-
neous ASC population. As the use of enzymes is accom-
panied with high costs and might have an impact on
safety [79] and efficacy [93, 94], several groups focus on
non-enzymatic isolation methods using shear force, cen-
trifugal force, radiation force, and pressure. This mechan-
ical step replaces the enzymatic digestion to separate the
cells or cell aggregates from adipose tissue. Nevertheless,
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similar to the enzymatic cell isolation methods, the range
of protocols and methods for the non-enzymatic cell isola-
tion shows also high variations.

Adipose tissue-derived cell isolation systems

Based on experiences in esthetic surgery, it is known
that transfer of autologous fat is beneficial and therefore
preferable to all short-acting fillers [95, 96]. But the use
of autologous fat can also have serious disadvantages,
such as partial necrosis after transplantation of larger
quantities. For improving the survival rate of trans-
planted fat grafts, vascularization is required for nutri-
tion and incorporation inside the surrounding tissue.
The additional use of stem cells as SVF and ASC can
eliminate these limitations. It has been shown that cell-
assisted lipotransfer (CAL) can reduce postoperative
atrophy and enhance neovascularization [97-103].

Automated closed devices could help to standardize
the isolation process with the assurance of a sterile
process. Therefore, a number of different companies
together with research laboratories started to develop
automated devices to perform parts or even the
whole cell isolation process. Some of those devices
were primarily designed for enrichment of adipose
tissue for autologous fat grafts during plastic surgery
and later upgraded for isolation of cell fractions from
adipose tissue.

Table 1 summarizes a survey of currently patented, pub-
lished, or commercially available enzymatic adipose
tissue-derived cell isolation systems. The following sys-
tems aim for automation of preparation by collagenase-
based digestion: AdiStem™ Small/Large Kit and AdiLight
(AdiStem Pty Ltd., China), Sepax 2 (Biosafe Group SA,
Switzerland), Cellthera Kit I and II and Method for isola-
tion of adipose tissue-derived stromal vascular fraction
(Cellthera, s.r.o., Czech Republic), A-Stromal™ kit (Cellular
Biomedicine Group, Inc./Cellular Biomedicine Group HK,
Ltd., USA), Celution® 800/CRS and 820/CRS (Cytori Ther-
apeutics, Inc., USA), Sceldis® (ED Co. Ltd. & Purebiotech
Co., Ltd., South Korea/Medica Group, United Arab Emir-
ates), Automated systems and methods for isolating regen-
erative cells from adipose tissue (General Electric
Company, USA), GID SVE-1" (GID Group, Inc., USA),
HuriCell (Hurim BioCell, Co., Ltd., South Korea), Appar-
atus and methods for cell isolation (Ingeneron, Inc., USA),
STEM-X" (Medikan International Inc., USA), Beauty Cell
(N-Biotek, Inc., South Korea), UNISTATION™ (NeoGen-
esis Co., Ltd., South Korea), CHA STATION™ and Multi
Station (PNC International Co., Ltd., South Korea/PNC
North America Division Of Advanced Bio-Medical Equip-
ment Co., INC), CID300 (SNJ Co., Ltd., South Korea/
TOPMED CO., LTD., South Korea), Stempeutron™ (Stem-
peutics Research Pvt. Ltd., India), Tissue Genesis Icellator
Cell Isolation System and Hand-held micro-liposuction
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adipose harvester, processor, and cell concentrator (Tissue
Genesis, Inc., USA).

Other systems do not include enzymatic digestion but
break the processed adipose tissue by mechanical forces.
Table 2 summarizes a survey of currently patented, pub-
lished, or commercially available non-enzymatic adipose
tissue-derived cell isolation systems. The following non-
enzymatic cell isolation systems generate SVF-enriched
adipose tissue: Devices for harvesting and homogenizing
adipose tissue containing autologous endothelial cells
(Baxter International Inc., USA), Puregraft’ (Bimini
Technologies LLC, USA), Fastkit (Fastem) (CORIOS
Soc. Coop., Italy), LipiVage™ (Genesis Biosystems, Inc.,
USA), Revolve™/GID 700™ (LifeCell Corporation, USA/
GID Group, Inc., USA), Lipogems® (Lipogems Inter-
national  S.p.A., Italy), Lipo-Kit GT (Medikan
International Inc., USA), StromaCell™ (MicroAire Surgi-
cal Instruments, LLC, USA), and myStem® (MyStem
LLC, USA). Several other non-enzymatic isolation sys-
tems aim at the isolation of adipose tissue-derived cells
and obtain pure SVF: Method for isolating stromal
vascular fraction (Agency Science, Tech & Res, China),
Procedure and device for separating adult stem cells from
fatty tissue and Device for separating adult stem cells
(Human Med AG, Germany), Ultrasonic cavitation de-
rived stromal or mesenchymal vascular extracts and cells
derived therefrom obtained from adipose tissue and use
thereof and Isolation of stromal vascular fraction from
vascular tissues (IntelliCell BioSciences Inc., USA), Non-
enzymatic method for isolating human adipose-derived
stromal/stem cells (Pennington Biomedical Research
Center, USA), Isolation of stem cells from adipose tissue
by ultrasonic cavitation, and methods of use (Rusty
Property Holdings Pty Ltd., Australia/Amberdale Enter-
prises Pty Ltd., Australia/Tavid Pty, Australia), and
Selective lysing of cells using ultrasound (Solta Medical,
Inc.,, USA).

Note: Affiliations are status May—July 2015. Due to the
fast growing/changing market, some of the device/com-
pany names might have already changed at time of
publication.

In vitro/in vivo analyses of cells derived from enzymatic
isolation devices/procedures

Several of the presented systems have already been
tested in preclinical and clinical studies, and few com-
parative studies using cells isolated by different systems.
SVF cells isolated using AdiStem™ cell isolation kit were
combined with platelet-rich plasma (PRP) and trans-
planted into nude NOD/SCID mice resulting in joint
regeneration [104]. AdiStem™ isolated cells were acti-
vated with a photobiostimulator AdiLight with a total
viable cell number of 12 x 10%/ml fat compared to a
standard isolation method with 10x10° cells/ml fat
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Table 1 Survey of enzymatic adipose tissue-derived cell isolation systems

Enzymatic SVF isolation systems

Company Device/Method Picture Publication /
Patent

AdiStem Pty Ltd.

http://www.adistem.com/technology/ AdiStem™ Small / Large Kit [104-107]

adipose-derived-adult-stem-cells/

AdiLight

Biosafe Group SA

http://www .biosafe.ch/ Sepax 2

Cellthera Kit I and Il
Method for isolation of adipose tissue-
derived stromal vascular fraction cells

Cellthera, s.ro.
http//www.cellthera.org

Cellular Biomedicine Group, Inc./Cellular
Biomedicine Group HK, Ltd.
http://cellbiomedgroup.com/newsroom
/new-product-new-license/

A-Stromal™ kit

Cytori Therapeutics, Inc.

http://www.cytori.com Celution® 800/CRS

ED Co. Ltd. & Purebiotech Co,, Ltd/Medica Group e
http://www.medicagroup.com/Sceldis Sceldis

General Electric Company Automated systems and methods for

- isolating regenerative cells from adipose tissue

> A
‘W‘ ¢ } (6]

[32,141]

[87,108-111,
120, 142-146]

- [114, 115]

- [116]


http://www.adistem.com/technology/adipose-derived-adult-stem-cells/
http://www.adistem.com/technology/adipose-derived-adult-stem-cells/
http://www.biosafe.ch/
http://www.cellthera.org
http://cellbiomedgroup.com/newsroom/new-product-new-license/
http://cellbiomedgroup.com/newsroom/new-product-new-license/
http://www.cytori.com
http://www.medicagroup.com/Sceldis
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GID Group, Inc. GID SVF-1™ [113, 147, 148]
http://www.thegidgroup.com/

http://www.gideurope.com/gid-system/

Hurim BioCell, Co., Ltd. HuriCell [117,149]
http://a-swiss.org/aestetics/huricell/

[ngeneron, Inc. Apparatus and Methods for Cell Isolation [118]
Medikan International Inc. STEM-X™

http://docxueqiu.com/144d468295a2f23f9789fc75.pdf

N-Biotek, Inc. }
http://n-biotek.com Beauty Cel

NeoGenesis Co,, Ltd. ™

http://eng.neogenesis.co.kr/ UNISTATION

PNC International Co,, Ltd. / PNC North America CHA STATION™ [108]

Division Of Advanced Bio-Medical Equipment Co.,
INC

http://www.pncint.com/

http://pnc-na.com/

SNJ Co, Ltd. / TOPMED CO,, LTD.
http://www.globalsources.com/si/AS/SNJ-Co/
6008829321267/pdtl/Full-automatic-High-Yield-Rate/
1118766725.htm

Multi Station

CID300


http://www.thegidgroup.com/
http://www.gideurope.com/gid-system/
http://a-swiss.org/aestetics/huricell/
http://doc.xueqiu.com/144d468295a2f23f9789fc75.pdf
http://n-biotek.com/
http://eng.neogenesis.co.kr/
http://www.pncint.com/
http://pnc-na.com/
http://www.globalsources.com/si/AS/SNJ-Co/6008829321267/pdtl/Full-automatic-High-Yield-Rate/1118766725.htm
http://www.globalsources.com/si/AS/SNJ-Co/6008829321267/pdtl/Full-automatic-High-Yield-Rate/1118766725.htm
http://www.globalsources.com/si/AS/SNJ-Co/6008829321267/pdtl/Full-automatic-High-Yield-Rate/1118766725.htm
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Table 1 Survey of enzymatic adipose tissue-derived cell isolation systems (Continued)

Stempeutics Research Pvt. Ltd.
http//www.stempeutics.com/stempeutron.html

Stempeutron™

Tissue Genesis, Inc.
http://www tissuegenesis.com/icellator.html

Hand-held micro-liposuction adipose harvester, -

- [150]

Tissue Genesis Icellator Cell Isolation System™ -

[119,151-153]

processor, and cell concentrator

Patented, published or commercial available systems are listed with the associated company (in alphabetical order), a picture of the system as well as links and
references if accessible. The majority of the systems generates stromal vascular fraction (SVF). (Italic represents the title of patents, — not available)

[105]. AdiLight photobiostimulation-activated SVF were
endobronchially infused to idiopathic pulmonary fibrosis
(IPF) patients with an output of marginal improvement of
walking and forced vital capacity [106]. Another safety study
with this system was performed using infusions of autolo-
gous SVF in IPF patients with no deterioration in functional
parameters and quality of life [107]. A major study was per-
formed by Michalek et al. [32] where 1128 patients suffering
from osteoarthritis were treated with autologous SVF cells
isolated with Cellthera Kit I and II. Patients observed an im-
provement in pain, movement, and stiffness after SVF injec-
tion directly into the joint. Enzymatic cell isolation using the
Celution® 800/CRS system exhibits a cell number of 2.95 x
10° cells/ml with a viability of 86.6 % [87]. In a comparison
test, the Celution” 800/CRS system demonstrated the
highest cell yield (2.41 x 10° cells/g) compared to Multi
Station (1.07 x 10° cells/g), Lipo-Kit GT (0.35x 10°
cells/g), and CHA STATION™ (0.05 x 10° cells/g) [108].
Adipose-derived regenerative cell (ADRC)-enriched fat
grafting using the Celution® 800/CRS device resulted in
decreased fat absorption and increased neovasculariza-
tion in nude mice [109]. Autologous SVF cells isolated
with the same device improved hand disability and re-
duced pain in systemic sclerosis [110]. With the same
system, autologous ADRC and adipose tissue were
transurethrally injected, resulting in reduction of male
stress urinary incontinence [111]. ADRC-enriched fat
graft injections derived from Celution® device improved
breast contour in a clinical trial for breast conservation
therapy (BCT) [112]. Isolation of SVF with the GID
SVE-1" yielded an average cell number of 7.19 + 2.11 x
10° nucleated cells/ml of dry adipose tissue. This cell
number is dependent on the patient’s age and decreases
with increasing age [113]. Giiven et al. [86] observed a
higher cell yield with the Sepax 2 isolation system com-
pared to standard manual isolation (2.6 + 1.2 x 10° vs.
1.6 +0.9 x 10° nucleated cells/ml of liposuction) and
24 % higher clonogenicity. SVF cells derived via Sceldis®
were added to a mixture of platelet-rich plasma, hyalur-
onic acid, and CaCl, and injected to treat knee pain due
to meniscus tear [114, 115]. The invention of Khan et al.
resulted in cell numbers of ~6 x 10° cells/ml (66 % via-
bility) for donor 1 and ~1 x 10° cells/ml (51 % viability)
for donor 2 [116]. In an animal model of focal cerebral

ischemia, cells isolated with the HuriCell isolation de-
vice showed neuroprotective effects in ischemic brain
injury [117]. Stubbers and Coleman [118] invented an
apparatus and methods for cell isolation yielding 4.9 x
10°-24.7 x 10° total nucleated cells/100 g lipoaspirate.
SVF isolated with the Tissue Genesis Icellator Cell Isola-
tion System were successfully used with aspirated adi-
pose tissue for breast and face augmentation or
reconstruction [119]. Domenis et al. [120] analyzed
three isolation devices (Lipo-Kit, Celution®, Fastem) and
showed that SVF-enriched adipose fat grafts increased
thickness of the tissue and improved long-term effects
in breast reconstruction compared to standard lipo-
transfer. However, the non-enzymatic device Fastem
was less effective in stem cell enrichment compared to
the enzymatic devices Lipo-Kit and Celution®.

In vitro/in vivo analyses of cells derived from non-
enzymatic isolation devices/procedures

Washing and filtration of adipose tissue using Pure-
graft® showed higher tissue viability and lower presence
of red blood cells, free lipids, and contaminants com-
pared to other fat grafts [121, 122]. Processed adipose
tissue derived from the Revolve™ system exhibited sig-
nificant higher fat retention injected in nude mice than
with a standard centrifugation or decantation method
[123]. Washing of adipose tissue with the GID 700™ re-
sulted in significant reduced amounts of triglycerides,
lactate dehydrogenase, and hematocrit and maintained
osmolarity of the adipose graft [124]. SVF cells derived
from the harvesting and irrigation device LipiVage™
showed mesenchymal and endothelial progenitor cells
maintaining their growth and differentiation capacity
when applied through a fibrin spray system [125]. Lipi-
Vage™ yielded a higher number of viable adipocytes and
sustained a higher level of intracellular enzyme (gly-
cerol-3-phophatase dehydrogenase (G3PDH)) activity
within fat grafts [126]. Bianchi et al. [127] showed that
Lipogems® isolated cells exhibit a significantly higher
percentage of mature pericytes and ASC and lower
amount of hematopoietic cells than enzymatic isolated
cells and higher percentage of exosomes [128]. More-
over, Lipogems® showed arteriogenic and paracrine
properties for the rescue of ischemic limb [129] and
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Table 2 Survey of non-enzymatic adipose tissue-derived cell isolation systems
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Non-Enzymatic SVF isolation systems

Company Device/Method Picture Publication /
Patent

Agency Science, Tech & Res Method for isolating stromal vascular fraction - [154]
Baxter International Inc. Devices for harvesting and homogenizing - [135]
- adipose tissue containing autologous

endothelial cells
_Blmlm Technologies LLC Puregrafte [121,122]
CORIOS Soc. Coop. )
http://www.corios.it Fastkit (Fastem) (120]
Genesis Biosystems Inc. LiniVage™ [125, 126, 155]
http://genesisbiosystems.com/products/lipivage/ pivag
Human Med AG Procedure and device for separating adult stem - [156]
- cells from fatty tissue

Device for separating adult stem cells - [157,158]
IntelliCell” BioSciences Inc. Ultrasonic cavitation derived stromal or mesenchymal [159]
http://www.intellicellbiosciences.com vascular extracts and cells derived therefrom obtained

from adipose tissue and use thereof

[solation of stromal vascular fraction from [136, 160]

LifeCell Corporation / GID Group, Inc.
http://www lifecell.com/
http://www.thegidgroup.com/
http://www.gideurope.com/gid-system/

Lipogems International S.p.A.
http://www.lipogems.eu/

Medikan International Inc.
http://www.medikanint.com/

vascular tissues

Revolve™ / GID 700™

Lipogemsﬁ

Lipo-Kit GT

[123, 124,161, 162]

[127-134, 163]

[108, 120]


http://www.corios.it
http://genesisbiosystems.com/products/lipivage/
http://www.intellicellbiosciences.com
http://www.lifecell.com/
http://www.thegidgroup.com/
http://www.gideurope.com/gid-system/
http://www.lipogems.eu/
http://www.medikanint.com/
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Table 2 Survey of non-enzymatic adipose tissue-derived cell isolation systems (Continued)

MicroAire Surgical Instruments, LLC StromaCell™ - [164]
http://www.microaire.com

X
MyStem LLC st s I
http//www.mystem.info Y ﬁv
Pennington Biomedical Research Center Non-Enzymatic Method for Isolating Human Adipose- - [140, 165]
- Derived Stromal Stem Cells
Rusty Property Holdings Pty Ltd, / Amberdale Isolation of stem cells from adipose tissue by ultrasonic * [137,138]
Enterprises Pty Ltd, / Tavid Pty cavitation, and methods of use
Solta Medical, Inc. Selective lysing of cells using ultrasound - [139]

Patented, published or commercial available systems are listed with the associated company (in alphabetical order), a picture of the system as well as links and
references if accessible. The majority of the systems generates cell enriched adipose tissue, while some systems obtain stromal vascular fraction (SVF). (Italic

represents the title of patents, * currently upgrading technology, — not available)

ASC derived from Lipogems® exhibit enhanced tran-
scription of vasculogenic genes, enhanced differenti-
ation capacity in mouse embryonic stem cells, and
efficient direct multi-lineage reprogramming in human
skin fibroblasts compared to enzymatically isolated
ASC when exposed to a radio electric asymmetric con-
veyer (REAC) [130]. Human lipoaspirated adipose tis-
sue microfragmented with Lipogems® resulted in a
better mesenchymal stem cell source compared to nor-
mal lipoaspirated tissue, while maintaining the struc-
tural composition of the original tissue [131]. Fat
transplantation using Lipogems® applied in combin-
ation with orthognatic surgery reduces postoperative
pain and swelling and improves final esthetic outcomes
[132]. In addition, Lipogems® may improve the healing,
osteointegration, and stability of the implants in newly
formed bone [133] and can also improve the symptoms
of fecal incontinence due to muscular and neural local
trauma [134]. Another device for harvesting and hom-
ogenizing adipose tissue for endothelial cells was de-
scribed by Hu et al. [135] obtaining 1.12-2.13 x 10°
cells larger than 7.8 pm from 1 g adipose tissue but
after enzymatic isolation of the non-enzymatic isolated
cells. An increased population of microvascular endo-
thelial cells can be collected with an elongated cannula
with cutting edges to disrupt the connective tissue.
Victor invented a SVF isolation method using ultra-
sonic cavitation and yielded 1.67-2.24 x 10” cells with a
viability of 97.1-98.9 % [136]. Bright et al. [137] disso-
ciated adipose tissue by lysing mature adipocytes using
ultrasonic cavitation to obtain cell yields of about 2—4
million cells/gram adipose tissue. Clinical studies were
performed using intra-articular SVF injection for

patients suffering from osteoarthritis (knee, hip) and
intravenous SVF injection for rheumatoid osteoarthritis
showing improvement in pain, stiffness, and physical
function. Patients suffering from chronic migraine
experienced a decline in frequency and severity of
migraines after systemic treatment with autologous
SVF isolated with the ultrasonic cavitation protocol
from Bright et al. [138]. Another method was claimed
by Schafer [139], focusing on the separation of adipose
cells using ultrasonic energy/acoustic standing wave
with a yield of small (<50 pm) but more vital pre-
adipocytes for successful grafting. This graft could
stimulate the production of vascular structure. The
idea of a simple method comprising manual shaking
and washing the stem cells out from adipose tissue de-
rives from Gimble et al. [140] with a cell yield of 2.5 x
10° cells per 100 ml adipose tissue. These cells possess
equally high adipogenic and osteogenic differentiation
potential, compared to a standard enzymatic isolation
method.

Conclusion

In the past decade, subcutaneous adipose tissue came into
the focus of plastic surgery and regenerative medicine.
The isolated SVF as well as ASC have been successfully
used in clinical studies and trials. But there are still draw-
backs associated with current strategies to provide cellular
therapeutics, which is defined in the regulations of the
different countries. To fulfill the criteria of the regulatory
authorities for the translation of cell-based therapies into
clinics, a great deal of work remains to be done: primarily,
a common standard operating protocol, toxin- and xeno-
free reagents including replacement of enzymes and a


http://www.microaire.com
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quick quality control to predict donor variations in cell
identity and efficiency. Therefore, several adipose tissue-
derived cell isolation systems have been already developed
with the main goal to provide a closed, sterile, and safe
isolation process avoiding contaminations and unpredict-
ability of the cell material. However, not all of the cell
isolation systems are closed systems, which is the pre-
requisite for a sterile isolation unless the isolation is
performed in a cleanroom facility. Each method or system
has different advantages and disadvantages and is under
continuous development and optimization. Differences
within the systems include parameters such as operation
(manual or automatic), handling (easy until cumbersome
to use), and costs (e.g., expensive apparatus or high cost
consumables). Publication of study outcomes, comparative
studies as well as standardization of cell products will
allow the field to bring further effective therapy to the
clinics.
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