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Abstract

negatively impacts hair cell regeneration.

regeneration and cell signaling.

Background: We are using genetics to identify genes specifically involved in hearing regeneration. In a large-scale
genetic screening, we identified mgat5a, a gene in the N-glycosylation biosynthesis pathway whose activity

Methods: We used a combination of mutant analysis in zebrafish and a hair cell regeneration assay to phenotype the
loss of Mgatba activity in zebrafish. We used pharmacological inhibition of N-glycosylation by swansonine. We also used
over-expression analysis by mRNA injections to demonstrate how changes in N-glycosylation can alter cell signaling.

Results: We found that mgat5a was expressed in multiple tissues during zebrafish embryo development, particularly
enriched in neural tissues including the brain, retina, and lateral line neuromasts. An mgatsa insertional mutation and a
CRISPR/Cas9-generated truncation mutation both caused an enhancement of hair cell regeneration which could be
phenocopied by pharmacological inhibition with swansonine. In addition to hair cell regeneration, inhibition of the
N-glycosylation pathway also enhanced the regeneration of lateral line axon and caudal fins. Further analysis showed that
N-glycosylation altered the responsiveness of TGF-beta signaling.

Conclusions: The findings from this study provide experimental evidence for the involvement of N-glycosylation in tissue
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Background
Glycans, together with nucleic acids, proteins, and
lipids, constitute the four major components of the
cell [1]. Glycans have great structural complexity
and are largely diversified in different cell types pro-
viding cells with distinct functional properties [2].
Due to technical challenges in the detection and
characterization of different sugar forms, glycan re-
search has generally lagged behind genomic and
proteomic approaches. The biological consequences
of altered glycosylation remains a critical but chal-
lenging field of biomedical research [3].

Glycosylated proteins represent a prominent form of
glycan conjugates in the cell. Glycans can be found on a
wide variety of proteins, ranging from secreted extracellular
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proteins, to membrane receptors, to cytosolic proteins [4].
Glycosylation on these proteins offers a potential for modu-
lation of intracellular signaling and intercellular communi-
cations [5, 6]. There are two major types of protein
glycosylation, with N-glycosylation adding sugars to the
nitrogen of asparagine and O-glycosylation adding sugars
to the oxygen of serine or threonine residues [7]. It is evi-
dent that one single protein can be glycosylated at multiple
residues by one or multiple forms of glycosylation.
However, the dynamics and the impact of specific
glycosylation events are largely unknown, partly due
to lack of adequate knowledge on the glycosylation
processing enzymes themselves.

Tissue regeneration after traumatic injury is a process
demanding complex orchestration of molecular signaling
and cell-cell interactions. Since mammals have relatively
limited regeneration potential, many non-mammalian
vertebrate models, including zebrafish, have been used
to study the molecular mechanisms behind regeneration
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of tissues such as heart, liver, and hair cells (hearing)
[8, 9]. These studies have demonstrated a critical
involvement of numerous proteins and associated
signaling pathways during tissue regeneration; how-
ever, the contribution of protein glycosylation in this
process remains under-investigated.

In a genetic screen for genes affecting hair cell regen-
eration in zebrafish, we identified mgat5a as a modifier
in the regenerative response. The mgat5a gene is highly
conserved across all vertebrates. It encodes for the
betal,6-N-acetylglucosaminyl-transferase V enzyme, a med-
ial golgi enzyme in N-glycosylation pathway catalyzing the
biosynthesis of b1,6-GlcNac-branched N-glycosylation to
various protein conjugates. Previous reports indicate that
Mgat5a plays an important role in tumor metastasis, cell
proliferation, and immune cell activation [10-14]. In this
study, we examined the spatio-temperal distribution of
mgatSa transcript during embryo development and
explored the function of Mgat5a and the N-glycosylation
pathway in injury-induced tissue regeneration.

Results

An Mgat5a-RFP insertional mutation enhances hair cell
regeneration

To identify key genes and pathways involved in hearing
regeneration, we performed a large-scale targeted muta-
genesis and genetic screen to identify genes essential for
the regeneration of hair cells in the zebrafish lateral line
(Pei and Burgess, unpublished data). We specifically
targeted a subset of genes selected from previous work
where we performed transcriptional profiling on regen-
erating sensory epithelia of adult zebrafish after
damaging the inner ear with intense sound exposure
[15]. Genes were targeted using clustered regularly inter-
spaced short palindromic repeats (CRISPR)-associated
protein 9 (Cas9) or DNA integration and then inbred to
homozygosity to test for hair cell regeneration after ex-
posure to CuSO, for 1 h. Hair cells were counted 48 h
after toxic exposure. We identified mgat5a as a modifier
of the regenerative response based on analyzing mga-
t5a™"%1°7¢" mutation. mgat5a™"*'*7¢" was created by
inserting a gene-trap transposon into intron 10 of the
mgat5a gene and thus producing a fusion protein with a
truncated Mgatba protein at the N terminus and red
fluorescent protein (RFP) at the C terminus [16].
Reverse-transcription PCR (RT-PCR) analysis with two
primers framing the gene-trap integration region re-
vealed that the mutant had a dramatically reduced but
residual expression of mgat5a wild-type mRNA (Fig. 1a,b),
indicating that mgat5a™"**”¢" is a hypomorphic allele.
The mgat5a""***”#" mutation had no effect on hair cell
development (Fig. 1c,d); however, it possessed a measur-
able increase in hair cell regeneration compared to wild-
type (Fig. le). A time-course analysis revealed that hair
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cell regeneration in the mutant was enhanced at 2 days
post ablation (dpa), but became comparable to the control
at 3 dpa, indicating that it was not an “overgrowth”
phenotype (Fig. 1f). No additional phenotypes were ob-
served in the mgatSa™""*”¢" mutant.

mgat5a is expressed in neuromast hair cells and
supporting cells, but not in mantle cells

By visualizing the REP in the mgat5a™"*"*”* mutant, we ex-
amined the localization of mgatSa in zebrafish embryos.
Microscopic examination revealed that the RFP was present
in both anterior and lateral line neuromasts (Fig. 2a), another
hair cell-containing organ in zebrafish [17]. Confocal analysis
revealed that the Mgat5a-RFP fusion protein was expressed
through the entire neuromast in a somewhat granulated pat-
tern (Fig. 2b, h). The granulated distribution is consistent
with the Golgi localization of wild-type Mgat5a protein.

To identify which cell types in neuromast were express-
ing mgatSa, we first crossed the mgat5a™""*”¢" line with
Et (tnk1bpl:EGFP), in which the tnkibpl promoter drives
the expression of a green fluorescent protein (GFP) specif-
ically in supporting cells (Fig. 2c) [18]. The resulted double
transgenic embryos displayed granulated co-localized
fluorescence in some area of the neuromast (Fig. 2d), indi-
cating expression of GFP and RFP in supporting cells. The
double transgenic embryos also displayed granulated REP
in some GFP-excluded areas, indicating mgat5a expres-
sion in hair cells (Fig. 2d). It is interesting to note that
most of the RFP expression did not usually directly co-
localize with GFP, even when expressed in the same cells.
We believe that this is because the Mgat5a enzyme is se-
questered in the golgi apparatus and the GFP expression
is cytoplasmic. To further verify the presence of Mgat5a
in hair cells, we ablated hair cells using ototoxic chemical
copper and then examined the expression levels of the
GFP and RFP. After copper exposure, all cells expressed
both GFP and RFP, indicating that the GFP-negative, RFP-
positive cells were the hair cells.

We also crossed mgat5a™"**’¢" with the transgenic
line Et (ET20: EGFP), in which the GFP specifically la-
bels the neuromast mantle cells (Fig. 2i) [19]. We found
the resulting double transgenic embryos allocated the
RFP and GFP proteins in different areas of neuromast,
with Mgat5a-RFP in the inner circle of the neuromast
(supporting cells) and ET20: EGFP predominantly at the
periphery of the neuromast (mantle cells), and no
significant overlap between these two fluorescent
proteins (Fig. 2j). This distribution pattern indicates that
mgatSa is not expressed in the mantle cells.

mgat5a is expressed in neurological tissues during
zebrafish embryo development

The mgat5a gene is conserved across vertebrates includ-
ing zebrafish, mice, and humans. To study the function
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of mgat5a during zebrafish embryo development, we
performed whole-mount in situ hybridization (WISH)
analysis to examine the spatio-temperal localization of
mgatSa transcripts in embryonic tissues. We found that
mgat5a was strongly expressed at the four-cell stage
(Fig. 3a), prior to the onset of zygotic transcription,
indicating that the transcript was maternally deposited.
There was an enrichment of mgat5a expression in the
dorsal midline at 14 h post fertilization (hpf) (Fig. 3b)
and broadly in the brain at 1 dpf (Fig. 3c). The brain ex-
pression persisted at 5 dpf and expression was also detected
in the gut, spinal cord, and lateral line neuromasts (Fig. 3d).

Histological sections of in situ-stained 5-day-old
embryos revealed increased expression of mgat5a in sev-
eral organs. It was highly expressed in many retinal tissues
including the optic nerve and the inner and outer plexi-
form layers (Fig. 3e). Sections revealed the presence of

high levels of mgat5a transcripts in the entire brain area
(Fig. 3f), the cristae of the inner ear (Fig. 3fh), and the
spinal cord (Fig. 3g). Histological section analysis also
revealed an uneven distribution of mgat5a expression in
neuromasts (Fig. 3g,I), supporting its expression in a sub-
population of neuromast cells. In addition, the enrichment
of mgat5a was detected in the gut (Fig. 3g), an organ
known for high activity of glycosylation enzymes [20].

An mgat5a deletion mutation enhances hair cell
regeneration

To verify the role of mgat5a in hair cell regeneration,
we used CRISPR/Cas9 mutagenesis to create inser-
tion/deletion (indel) mutations in the mgat5a gene
(Fig. 4a). Small indel mutations in either target 1 (T1)
in exon 3 or target 2 (T2) in exon 10 caused no
effects on hair cell development or regeneration (data
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Fig. 2 mgat5a is expressed in neuromast hair cells and supporting cells, but not in mantle cells. a RFP expression in mgat5a
magat5a™"*79" homozygous embryos at 5 dpf were used for the RFP expression analysis. Arrows point to the RFP expression in the neuromasts
in the head and trunk. b—-g mgat5a is expressed in hair cells and supporting cells, revealed by the supporting cell labeling transgenic line Et
(tnk1bp1:EGFP). When compared to the neuromasts before ablation (b-d), the neuromasts after hair cell ablation (e and g) display a dramatic
reduction in RFP level. White arrows in d points to the expression of RFP in hair cells. Granulated distribution of yellow color in d indicate the co-
localization of RFP and GFP in supporting cells. h-j mgat5a is not expressed in mantle cells, revealed by mantle cell labeling transgenic line Et
(ET20:ET20:EGFP). RFP and GFP are localized in different areas of the neuromasts. The columns from left to right are the images from red, green,

ET20-EGFP

mn0157gt mutant.

not shown). When injecting both single guide RNA
targets simultaneously, we created a deletion mutation
(mgat5a"%*°) that deleted 49 kb of genomic DNA
spanning from exon 3 to the exon 10 of the 17-exon
mgat5a gene. RT-PCR analysis revealed that the
deletion mutant produced a truncated mgat5a mRNA,
whose expression level was higher than that of the
wild-type mgat5a mRNA in the control sibling
(Fig. 4b). The deletion mutant showed no effect on
hair cell development (data not shown), but like the
gene-trap allele mgat5a™"%"*7¢, showed an enhance-
ment of hair cell regeneration that was detectable 2
dpa (Fig. 4c). Similar to mgat5a™"%*’¢", the

hg2 . o
mgat54"%*° mutant showed no obvious abnormalities

and lived as a generally healthy and fertile adult.

CRISPR mutations of other genes in the N-glycosylation
pathway had no effect on hair cell regeneration

Mgat5a is a component in N-glycosylation pathway.
To examine the role of other components in the N-
glycosylation pathway in hair cell regeneration, we
used CRISPR/Cas9 targeting to mutate 11 other
genes that function at different steps of N-glycosyla-
tion pathway (Additional file 1: Figure S1, Additional
file 2: Table S1). We found none of the mutated
genes as single mutations had an effect on hair cell
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Fig. 3 mgat5a expression during zebrafish embryo development. a-d Whole mount in situ hybridization analysis of mgat5a expression at 1 hpf
(@), 14 hpf (b), 1 dpf (c), and 5 dpf (d). Orientations: lateral view in a, ¢, and d; dorsal view in b. Red arrow in b points to the expression in the
dorsal midline. Red and black arrows in d point to the expression in spinal cord and lateral line neuromast. e-i Histology sectioning analysis of
mgat5a expression in the retina (e), brain (f), and trunk (g). White arrows in e point to the expression in outer and inner plexiform layers of the
retina. Black arrow in e points to the expression in the optic nerve. Black box in f demarcates the inner ear area. Black and red arrows in g point
to the expression in the spinal cord and gut, respectively. Black box in g demarcates lateral line neuromast. h A magnified image of the inner ear
region demarcated in f. Red arrow points to the enriched expression in the apical region of cristae. i A magnified image of the neuromast
demarcated in g. Mosaic patterning indicates expression in some neuromast cells. Scale bars 100 um in e, f, and g; 20 um in h and i

regeneration (data not shown). We also found no al-
teration in hair cell regeneration in mutated mgat5h
(data not shown), a gene that has presumably over-
lapping function with mgat5a and is conserved
across many species [21]. The failure in identifying
other gene candidate may suggest that many compo-
nents in N-glycosylation pathway have functional
redundancy and/or a strong compensatory response.

Inhibition of N-glycosylation pathway enhances hair cell
regeneration

Both the mgat5a™"*"*# insertion mutant and the mga-
t54"%%° deletion mutant had considerable mRNA expres-
sion in either wild-type form (Fig. 1b) or truncated form
(Fig. 4b), suggesting both mutations are hypomorphic.
To examine the impact of loss-of-function of N-glycosyl-
ation pathway on hair cell regeneration, we used two
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mgat5a E3-E10 mutation deletes 49.2 kb of genomic DNA between the T1 and T2 CRISPR targets. b RT-PCR analysis of mgat5a expression in wild-type
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mutant embryos. Beta-actin is used as internal reference. ¢ Enhanced hair cell regeneration in mgat5a"®° mutants. The graph is obtained from analyzing
and afterwards genotyping 32 embryos that were generated from a pairwise incross of heterozygotes. Error bars show the sem. The difference between
wild-type (WT) and homozygotes in d is significant (p = 0.02)

pharmacological inhibitors, swainsonine (SW) and
1-deoxynojirimycin (DNJ), targeting different steps of
the pathway (Fig. 5a). Both inhibitors caused enhanced
hair cell regeneration at 2 dpa and no difference at 3
dpa (Fig. 5b,c), consistent with the observations from
mgat5a™""*7¢" and mgat54"¢*° deletion mutants. DN]J
had a poor solubility, the only concentration that
showed a significant effect was 250 pM. SW enhanced
hair cell regeneration at several concentrations. SW at
5 pg/ml significantly enhanced hair cell regeneration;
however, increased concentration of SW (at 25 or 50 pg/ml)
did not exaggerate the difference, suggesting a complete
inhibition of the pathway with 5 pug/ml of SW. Since SW
had a stronger effect on hair cell regeneration than DN]J
and the two mgat5a hypomorphic mutations, it was used
for further investigation on the role of N-glycosylation in
other tissue regeneration.

Inhibition of N-glycosylation pathway enhances the
regeneration of lateral line axon and caudal fin

Since mgatSa is expressed in multiple tissues (Fig. 3)
and N-glycosylation affects numerous biological pro-
cesses [1], we hypothesized that blocking N-glycosylation
would affect different forms of regeneration. We first
examined the effect of SW on lateral line axon regener-
ation. The lateral line axon is an essential part of the
peripheral nerve system in zebrafish that innervates the

lateral line neuromasts [17]. In addition to hair cell
regeneration, we found that SW treatment significantly
promoted the regeneration of laser-damaged lateral line
axons (Fig. 6a). We also examined the effect of SW on
the regeneration of caudal fins, a process involving the
regrowth of multiple tissue types, and found that SW
significantly promoted caudal fin regeneration (Fig. 6b).

Alterations in Notch signaling do not explain the
observed phenotypes

We hypothesized that because the majority of glycosylated
proteins are at the cell surface, altering glycosylation
patterns could impact the dynamics of cell signaling. The
Notch signaling pathway is a candidate, as several compo-
nents of the Notch pathway are extensively N-glycosylated
[22, 23]. In addition, Notch signaling is one of the few
known pathways that can promote hair cell regeneration
[8]. To study whether SW impacts Notch signaling during
hair cell regeneration, we compared the effect of SW and
Notch signaling inhibitor N-[(3,5-difluorophenyl)acetyl-L-
alanyl-2-phenyl] glycine-1,1-dimethylethyl ester (DAPT)
and determined their effects on tissue regeneration. For
hair cell regeneration, DAPT treatment enhanced hair cell
regeneration at 2 dpa, similar to SW. The DAPT-
mediated enhancement persisted and hair cell numbers
were higher than the controls at 3 dpa (Fig. 7a), consistent
with the previous report [24]. However, the SW-mediated
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regeneration was statistically the same as the controls at 3
dpa (Fig. 5b). In caudal fin regeneration (Fig. 6b), DAPT
treatment had the opposite effect of SW causing an inhib-
ition of regeneration (Fig. 7b).

Inhibition of N-glycosylation pathway reduces
responsiveness to TGF-beta antagonists but not agonists
Several in vitro studies have shown that N-glycosylation
affects TGF-beta signaling by altering the responsiveness
to TGF-beta ligands [12, 25-27]. To test whether SW
affects tissue regeneration in vivo by altering TGF-beta
signaling, we examined the morphological phenotypes of
the embryos injected with synthetic mRNA of two TGF-
beta/Nodal ligands: Leftyl and Squint [28, 29], in the
presence or absence of SW. The presence of SW signifi-
cantly reduced the responsiveness of the embryos to the
mRNA encoding Leftyl, a Nodal antagonist (Fig. 8a,b).

However, SW showed no significant effect on the embryos
injected with the mRNA encoding Squint, a Nodal agonist
(Additional file 1: Figure S2). These data indicate that the
SW-treated embryos are more resistant to a reduction in
Nodal signaling, suggesting a potential up-regulation of
TGEF-beta signaling in the SW-treated embryos.

We have not specifically identified members of the
TGF-beta superfamily whose alterations result in the
observed phenotypes in the mgat5a mutants or
swansonine-treated embryos, but it remains an area of
active research.

Discussion

Several features of zebrafish make it a unique model for
large-scale genetic screening, including large egg pro-
duction, a completed genome sequence, a flexible
genome-editing toolset, and relatively low cost compared
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to other vertebrate models. Using zebrafish to study the
regeneration of the tissues that do not typically regener-
ate in mammals allows us to discover key pathways ne-
cessary to trigger wound healing.

Our screening reveals that both the mgat5a
gene trap mutant and the mgat5a"¥*’ deletion mutant
caused a transient enhancement of hair cell regener-
ation. The detectable level of wild-type mgat5a mRNA
in the mgat5a™"*"*7¢" mutant is likely from some skip-
ping of the gene trap splice acceptor. The increased level
of truncated mRNA in the mgat54"%*’ deletion mutant
could be caused by a feedback compensation for reduced
Mgat5a enzymatic activity. Our sequencing analysis indi-
cated the truncated mRNA contains a frame-shifted
mutation that presumably encodes an extra 23 residues
followed by a stop codon (data not shown). Since the
deletion region spans 8 exons in the middle of the
17-exon gene, it is possible there is an alternative spli-
cing of the truncated mRNA to produce a partially

mn0157gt

functional Mgat5a protein. We have not yet detected
any alternative transcripts.

WISH analysis demonstrated an enrichment of mgat5a
in neurological tissues including the brain and retina
during early larval development. In addition, mgat5a is
highly expressed in hair cells and supporting cells, the
neurosensory receptor and glia-like cells that are respon-
sible for detecting sound and motion. This expression
pattern is consistent with the role of N-glycosylation in
nerve development [30]. Hair cell regeneration was
measurably accelerated in the mgat5a™*'*”¢" mutant
and the mgat54"%* deletion mutant, a phenotype that
could be recapitulated by SW inhibition of the N-glyco-
sylation pathway, suggesting that N-glycosylation also
plays a role in nerve regeneration. This hypothesis was
further supported by the observation that SW inhibition
enhanced regeneration of the lateral line axons that
innervate hair cells. It is possible that the enhanced
regeneration of caudal fins could also be, at least
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p <0001) and 3 dpa (n=10, p <0.001), but not at 1 dpa (n =10, p =0.132), between the control and DAPT-treated embryos. b DAPT treatment inhibits
caudal fin regeneration. The difference between untreated and DAPT treated fish is significant (n =10, p = 0.026)

v 1)
*

120

100 -

80 -

40 -

Relative fin area (%)
(=2}
o

Ctrl DAPT 50 uM




Pei et al. Cell Regeneration (2016) 5:3

Page 9 of 12

ve)
>
1

100% [—
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Embryo phenotypes

WT

ence is detected between the control and SW-treated groups (p < 0.001)

L e S |

Fig. 8 Inhibition of N-glycosylation reduces responsiveness to TGF-beta antagonist Lefty1. a Classification of morphological phenotypes at 1 dpf.
WT embryos were injected with 25 pg of leftyl mRNA at one-cell stage, treated without or with 50 pg/ml SW from 4 hpf until 24 hpf, and then
used for phenotypic analysis. Representative phenotypes for each class of embryos are shown, with the embryos oriented in a lateral view. cl-clV,
class |-class IV. b Percentage of embryos with different classes of phenotypes. Number of embryos analyzed is as indicated. A significant differ-

clV

clll

cll

LN

WT + SW

J

partially, attributed to the enhanced nerve regeneration
in the fin tissue, as nerve signaling has been shown to be
important for limb regeneration in axolotls [31].

It is challenging to identify which signaling pathways
are affected by Mgat5a-mediated N-glycosylation during
tissue regeneration due to its involvement in a wide
variety of cellular functions. N-glycosylation modifies
numerous proteins and can affect protein functionality
through different mechanisms [32]. Previous studies
have shown that Mgatba has a variety of functions
during growth and homeostasis. Mgat5a is important for
tumor growth and metastasis and mgat5a mutant
showed reduced tumor cell mobility [11, 27, 33, 34].
Mgat5a plays a role in immunity, as Mgat5a deficiency is
associated with abnormal T cell activation and auto-
immunity [10, 13]. Up-regulation of Mgat5a facilitates
keratinocyte proliferation, epidermal hyperplasia, and
skin wound healing [12, 14]. In addition, a secreted
version of Mgat5a promotes angiogenesis [35]. Further-
more, Mgat5a can modulate the functions of different
cytokine receptors [27].

We probed the involvement of Notch signaling pathway
because its components are N-glycosylated and it plays a
role in promoting hair cell regeneration [22-24, 36], by
comparing the effect of N-glycosylation inhibition with
SW and Notch signaling inhibition with DAPT. For hair
cell regeneration, the effects of SW and DAPT were simi-
lar at 2 dpa but different at 3 dpa. SW promoted axon

regeneration, consistent with the effects of DAPT [37].
For caudal fin regeneration, the effect of SW is opposite to
that of DAPT [38, 39]. Together, these data suggest that
SW-mediated caudal fin regeneration occurs in a Notch-
independent mechanism, while SW-mediated regener-
ation of hair cell and axon may depend on Notch signaling
activation. This possibility requires further examination.

TGEF-beta signaling is one of the prominent pathways af-
fected by N-glycosylation based on in vitro studies [12, 26,
27]. We found that inhibition of TGF-beta signaling inhib-
ited the regeneration of hair cells and caudal fins (data not
shown), the opposite of the effects of SW. Introduction of
embryonic TGEF-beta/Nodal ligands revealed a reduced
responsiveness to the antagonist Leftyl but not to the
agonist Squint, suggesting a possible up-regulation of
TGEF-beta signaling in the SW-treated embryos. Based on
the diversified functions of Mgat5a, TGF-beta signaling is
not likely to be the sole contributor for the N-glycosyla-
tion effects seen in tissue regeneration. To make it more
complicated, the effects on TGF-beta signaling could be
due to cross-talk with Notch signaling [40, 41]. Much
more work is needed to elucidate why the loss of
Mgat5a-mediated N-glycosylation results in an improved
regeneration.

Conclusions
Our study demonstrates a role for Mgat5a in modulating
the regeneration of multiple tissues, proposing N-
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glycosylation as a potential therapeutic target for tissue
regeneration. We also show that alterations in glycosylation
can alter the sensitivity of cell signaling in certain pathways.

Methods

Zebrafish embryology

All animal work was in compliance with NHGRI IACUC
approved protocol G-01-3 assigned to SMB. All proce-
dures were also in compliance with the NRC “Guide for
the Care and Use of Laboratory Animals”. Zebrafish
embryos were obtained from natural crosses and staged
according to Kimmel et al. [42]. WISH was performed
as described [43]. For WISH on embryos older than 24
hpf, N-phenylthiourea (Sigma, Cat# 7629) was used to
suppress pigment development. mgat5a probe was made
using the following primers: probe-F: CAG AGG AGA
ACC AAA GCG TGA TGGA; probe-R: GGA CCT CCA
ACT GTG TTT TCC TGTC. 10 embryos per data point
were used for WISH, and the representative images were
shown. Capped mRNAs for leftyl and squint were syn-
thesized using mMessage mMachine SP6 Transcription
Kit (Ambion, Cat# AM1340M). Microinjections of these
mRNA were performed in one-cell stage embryos. The
injected embryos were sorted at 4 hpf, and only the
healthy embryos were used for mock or SW treatment
and then for morphological analysis at 24 hpf. For histo-
logical sectioning analysis, 5-day-old embryos from in
situ hybridization analysis were embedded in paraffin,
transversely sectioned at a thickness of 5 um, and then
counterstained by light nuclear fast red to better
visualize the in situ staining.

Analysis of mgat5a expression in neuromast cells

Three transgenic lines were used for analyzing mgat5a
expression in neuromast cells: mgatSa™"7%  [16),
Et(tkn1bp1:EGFP) [18], and Et(ET20:EGFP) [19]. Embryos
obtained from single or double transgenic line(s) were
sorted based on the encoded fluorescent protein(s). The
sorted embryos were used for mock or copper treatment at
5 dpf, mounted in 1 % low-melting agarose, and then
imaged under a Meta-510 confocal microscope. For each
data point, nine neuromasts from three embryos were ex-
amined and imaged, with the representative images shown.

Mutation generation and characterization

mgat5a™"**7¢" mutation was identified by a gene trap
insertion [16]. mgat5a™""'*"¢" was genotyped using three
primers, with mgat5a-F (CTC TAA CCA GTG ACC
TTC TTG CTQG) and mgat5a-R (CAA GGA ATT TCA
AGT AAC GGT CAC) amplifying the WT allele of
350 bp, with Tol2N (AAT TAC TCA AGT ACT TTA
CAC CTC T) and mgat5a-R amplifying the mutant allele
of 196 bp. mgat54"¢*° was generated by co-injecting
150 pg of Cas9 mRNA with 50 pg of each of two
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CRISPR single guide RNAs targeting exon 3 and exon
10 of mgat5a, as previously described [44]. The CRISPR
target in exon 3 was GGG TTG ACT GGG TTT GGT
CG; in exon 10, it was GGA CTC ATT CGG GAC GGA
GC. The E3-E10 deletion mutation was detected using
primers E3F (AAG ACT CTA GCT GTT CTT CTGG)
and E10R (GAG TCT TGT GGC CTT TGG AC) with
an amplicon size of 268 bp. E3F/E10R primers produced
no amplicon for the WT allele. For knockdown efficiency
analysis, RT-PCR was performed using 10 control and
10 mutant embryos at 3 dpf, with beta-actin as an
internal reference. mgat5a transcript was detected by
primers E9F (AAG GCG ATA AAG TGG TGG AGC
TGA) and ExI2R (AGT GCC ATG GAC TGT GCC
GTG AAC TTCC) for mgat5a™"**”¢" and by primers
E3F and Ex10R for mgat5a"*’. Detailed information on
the generation and detection of other CRISPR/Cas9
mutations are shown in Additional file 2: Table S1.

Hair cell analysis

For hair cell development analysis, the embryos at 5 dpf
were used for hair cell staining and counting. For hair
cell regeneration analysis, the embryos at 5 dpf were
exposed to 10 uM of copper sulfate (Sigma, Cat#
451657) for 2 h, allowed to recover for 48 h except when
otherwise indicated, and then used for hair cell staining
and counting. Hair cell staining by YO-PRO-1 (Thermo
Fisher Scientific, Cat# Y3603) was done as previously de-
scribed [18]. The stained embryos were oriented for lat-
eral views in a 96-well plate for counting and imaging
with a fluorescent microscope. Hair cells per neuromast
presented in graphs were obtained by averaging the hair
cell counts from four neuromast per embryos at the P1,
P2, P4, and P5 positions [45] from multiple embryos. P2
neuromast was not counted, since it had a greater vari-
ation in the number of hair cells. For studying genotype
and phenotype correlation, 24-32 embryos obtained
from a single pair of heterozygote incross were ana-
lyzed and then genotyped. For studying the effect of
chemical treatment, the number of wild-type embryos
used for each data point was 10, except when other-
wise indicated.

Chemical treatment

The chemicals used in this study were as follows: SW
(Sigma, Cat# S9263), DNJ (Sigma, Cat# D9305), and
DAPT (Sigma, Cat# D5942). All chemical treatments
were performed in a 6-well plate, with each well contain-
ing 5 ml of 1 x Holtfreter’s buffer [46] and fewer than 25
embryos. For measuring the effect on hair cell regener-
ation, WT embryos were ablated hair cells with 10 uM
copper for 2 h at 5 dpf, treated with or without the
chemical inhibitor for 48 h (except when otherwise indi-
cated), and then counted hair cells as described. For
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measuring the effect on caudal fin regeneration, WT
embryos at 3 dpf were anesthetized and amputated at
the rear end of ventral pigment gap, treated without
or with the indicated chemicals for 72 h, and then
used for measurement of caudal fin area. The caudal
fin area was measured by Image ] software, using the
anterior end of ventral pigment gap as a visual
reference.

Lateral line axon regeneration analysis

To evaluate the effect of swansonine on posterior lateral
line (pLL) nerve regeneration, Tg (neuroD:EGFP;mpegl:m-
Cherry) double transgenic larvae were pre-incubated in E3
medium containing 50 pg/ml swansonine in 0.5 % DMSO
for 15 h before neurectomy, from 57 to 72 hpf. As con-
trols, we used larvae incubated only with 0.5 % DMSO.
The 3 dpf pre-incubated larvae were anesthetized with
0.01 % tricaine and mounted in rectangular plates sealed
with low melting point agarose (0.75 %). The agarose was
dissolved in E3 medium containing DMSO or swansonine
at the same concentration as the pre-treatment in order to
avoid treatment interruption. Once the agarose was set,
the embryos were neurectomized [47, 48] using a tungsten
electrode connected to a power source under the follow-
ing conditions: 1 pulse of 1.5 s of duration and 17 pA of
current intensity. The pLL nerve was interrupted midway
between the pLL ganglion and the L1 neuromast of the
primary lateral line, approximately at the fourth somite.
After neurectomy, larvae were dismounted and main-
tained in fresh 2 ml E3 medium containing swansonine or
DMSO at 28 °C for 24 h post neurectomy (hpn). Larvae
that displayed partial pLL nerve ablation or larvae with an
intact pLL nerve were removed from the experiment.
After 24 hpn, selected embryos were anesthetized and
mounted in agarose plates in order to evaluate nerve
regeneration. Using an epifluorescence microscope
(Olympus, model IX81), we quantified nerve regrowth by
recording the posteriormost somite reached by the nerve
after 24 hpn in control and drug-treated larvae. The re-
sults were obtained from three independent experiments
and a total of 45 control and 33 swansonine-treated larvae
were analyzed. All data analysis was performed using
Prism 5.0b (GraphPad Prism Software, Inc., USA).

Statistical analysis

The statistics were performed using the Student ¢ test
(two tailed) except otherwise indicated. A difference
was considered as significant when the p value was
less than 0.05. Bar graphs showed the mean and the
standard error of the mean (s.e.m.). All experiments
shown were replicated at least two times and
produced consistent results.
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Additional files

Additional file 1: Figure S1. CRISPR mutations of other genes in the N-
glycosylation pathway. The pathway steps for CRISPR-mutated genes are
shown. For the genes duplicated in zebrafish, including (mania,b),
(man2a,b), and (mgat4a,b,c), each of the replicated copy was mutated
and analyzed for the regeneration individually.

Figure S2. Inhibition of N-glycosylation shows no effect on the respon-
siveness to TGF-beta agonist Squint. (A) Classification of morphological
phenotypes of WT embryos injected with squint mRNA. WT embryos
were injected with 10 pg of squint mRNA at 1-cell stage, treated without
or with 50 pg/ml SW from 4 to 24 hpf and then analyzed for morpho-
logical phenotypes. cl-clll, class I-class lll. cIV embryos were dead from
over-involution at the time of analysis. (B) Percentage of embryos with
different classes of phenotypes. The number of embryos analyzed is as indi-
cated. The difference between the control and SW treated groups is not sig-
nificant (. s, p=0.33). (PDF 612 kb)

Additional file 2: Table S1. CRISPR targets and mutation detection
primers for the genes in N-glycosylation pathway. (XLS 46 kb)
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